Preamble

Physics has been evolving for the last three centuries and has answered some of the oldest and most profound questions asked by human beings. The laws of physics are applicable from the largest of the entities of this universe to the smallest of particles known. Physical science spans theory and application and it requires thinking both in abstract terms and concrete terms. The recent technological advances that have given us mobiles, laptops, air conditioners, etc. are based on physics.

The NEP-2020 is based on the principle that education must develop not only cognitive capacities - both the 'foundational capacities' of literacy and numeracy and 'higher-order' cognitive capacities, such as critical thinking and problem solving – but also social, ethical, and emotional capacities and dispositions. In a broader way, NEP envisions an education system rooted in Indian ethos that contributes directly to transforming India that is Bharat, sustainably into an equitable and vibrant knowledge society, by providing high-quality education to all, thereby making India a global knowledge superpower.

The Department of Physics offers the certificate, diploma, undergraduate B.Sc. (Honors) Physics program, and B.Sc. Physics program as well as general elective courses in Physics for students of Honors programs in disciplines other than Physics. The courses offered are aimed at undergraduate level training facilitating multiple career paths. Students who graduated can take up Ph.D. programs in Physics leading to research as well as R&D can be employable in industries or can pursue a teaching profession. B.Sc. and B.Sc. (Honors) aim at laying a strong foundation in physics at an early stage of their career. There are several employment opportunities after the successful completion of their course. Graduating students can fetch employment directly in companies as physicists, scientists, Lab assistants, scientific assistant, Research Associates, Subject Matter Experts, and Technicians. In addition to this graduates can also pursue their carrier as an Academic counselor and physics faculty.

Four Year Undergraduate Programme (FYUGP)/ Five Year Integrated Master Programme (FYIMP)- Program Objectives:

- 1. To develop an understanding and knowledge of the basic theory of Electricity and Magnetism, Mechanics, Electrodynamics, etc., and its applications using Electronics, Quantum Mechanics, etc.
- 2. To develop the ability to use this knowledge to analyze new situations in the application domain.
- 3. To acquire necessary and state-of-the-art skills to take up industry challenges. The objectives and outcomes are carefully designed to suit the abovementioned purpose.
- 4. The ability to synthesize the acquired knowledge, understanding, and experience for a better and improved comprehension of real-life problems.
- 5. To learn skills and tools like mathematics, statistics, and electronics to find the solution, interpret the results and make predictions for future developments.
- 6. To formulate, model, design solutions, procedure and use software tools to solve real-world problems.

(Four Year Undergraduate Programme (FYUGP)/ Five Year Integrated Master Programme (FYIMP) - PROGRAM SPECIFIC OUTCOMES

Upon completion of the undergraduate honors degree program in Physics at the Department of Physics, students will be able to:

- 1. Demonstrate a systematic and coherent understanding of basic Physics including the concepts, theories and relevant experimental techniques in the domains of Mechanics, Electricity and Magnetism, Waves and Optics, Thermal Physics, Quantum Mechanics, Statistical Mechanics, Mathematical Physics and their applications in other areas of Physics;
- 2. Demonstrate the ability to relate their understanding of physics to other sciences and hence orient their knowledge and work towards multi-disciplinary/inter-disciplinary contexts and problems
- 3. Demonstrate both an understanding and the practical application of ethical standards as well as scientific temperament in public and private life.
- 4. Demonstrate the ability to read, understand, and critically analyze the physical ideas presented in published textbooks and science magazines at the undergraduate level.

5. Demonstrate skills in areas of specializations of their elective subfields so that they can continue with higher studies and can relate their knowledge to current developments in those subfields.

Semester	Disciplinary/Interdisc iplinary Core Courses (Major)	Disciplinary/Inter disciplinary (Minor)	Multi/Inter disciplinary courses –GE/OE	Ability Enhancement	Skill Enhancement	Common Value added	Credits
	(88 Credit)	(38 credit)	(9 credit)	(8 credit)	(9 credit)+16	(08)	176
I	MJC/DSC-1 (3) MJC/DSC-2 (3)	MNC/DSE-1 (3) For: Other Department	MDC-1 (3) From: From Other Departments (School) with multidisciplinary approach	AEC1-English Communication (2) AEC2-Hindi /(MIL)	SEC1-Fundamentals of Computer (3)	VAC-1 (3) Water Harvesting/Other subjects from the basket	22
			IC2 (For Science-IC2, For Humanities & SS-IC1) (3)	Communication (2)			
II	MJC/DSC-3 (3) MJC/DSC-4 (3)	MNC/DSE-2 (3)	MDC-2 (3)	AEC3-English Grammar & Literature (2)	SEC2-AI/IT/AOT + Field Studies and Practices (3)	VAC-2 (3) NSS/NCC/Sports/Fitn ess/ES/Other subjects from the basket	22
				AEC4-Hindi Grammar & Literature /(MIL) Communication (2)			
III	MJC/DSC-5 (4) MJC/DSC-6 (4) Lab (2)	MNC/DSE- 3 (4)	MDC-3 (3) From Other Departments (School) with multidisciplinary approach (3)		SEC3- (3)	VAC-3 (2) Understanding India (2)	22
IV	MJC/DSC-7 (4) MJC/DSC-8 (4) MJC/DSC-9 (4)	MNC/DSE- 4 (4) Lab (2)			Summer Internship (2) (Minor)		22

Schematic Curriculum Framework For 4 years UG –Science Course as per Curriculum and Credit Framework (December-2022)

	Lab (2)						
V	MJC/DSC-10(4)	MNC/DSE- 5 (4)					22
	MJC/DSC-11(4)	MNC/DSE- 6 (4)					
	MJC/DSC-12 (4)						
	Lab (2)						
VI	MJC/DSC-13 (4)	MNC/DSE- 6 (4)			Internship (2)		22
	MJC/DSC-14 (4)	Lab (2)			(Major)		
	MJC/DSC-15 (4)						
	Lab (2)						
Credits	s 64	30	09	08	13	8	132
	MJC/DSC-16 (4)	MNC/DSE-7 (4)					22
VII	MJC/DSC-16 (4) MJC/DSC-17 (4)	MNC/DSE-7 (4) MNC/DSC-8 (4)					22
VII	MJC/DSC-16 (4) MJC/DSC-17 (4) MJC/DSC-18 (4)	MNC/DSE-7 (4) MNC/DSC-8 (4)					22
VII	MJC/DSC-16 (4) MJC/DSC-17 (4) MJC/DSC-18 (4) Lab (2)	MNC/DSE-7 (4) MNC/DSC-8 (4)					22
VII	MJC/DSC-16 (4) MJC/DSC-17 (4) MJC/DSC-18 (4) Lab (2) MJC/DSC-19 (4)	MNC/DSE-7 (4) MNC/DSC-8 (4)			Project Work (12)		22
VII	MJC/DSC-16 (4) MJC/DSC-17 (4) MJC/DSC-18 (4) Lab (2) MJC/DSC-19 (4) MJC/DSC-20 (4)	MNC/DSE-7 (4) MNC/DSC-8 (4)			Project Work (12)		22
VII VIII	MJC/DSC-16 (4) MJC/DSC-17 (4) MJC/DSC-18 (4) Lab (2) MJC/DSC-19 (4) MJC/DSC-20 (4) Lab (2)	MNC/DSE-7 (4) MNC/DSC-8 (4)			Project Work (12)		22
VII VIII Credit	MJC/DSC-16 (4) MJC/DSC-17 (4) MJC/DSC-18 (4) Lab (2) MJC/DSC-19 (4) MJC/DSC-20 (4) Lab (2) 88	MNC/DSE-7 (4) MNC/DSC-8 (4)	09	08	Project Work (12) 09+16=25	08	22 22 22 176

BASKET OF MINOR SUBJECTS (May Add More by Departments) NATURAL SCIENCES

S.N.	Major	Introductorv Subject/ Minor
		Chemistry
		Geology
1	Botany	Zoology
		Economics
		Geography
		Env. Sciences
	Zoology	Chemistry
		Geology
		Botany
		Economics
		Geography
		Microbiology

S.N.	Major	Introductory Subject/
		Minor
		Botany
		Mathematics
		Physics
2	Chemistry	Geology
		Zoology
		Economics

S.N.	Major	Introductory Subject/ Minor
		Chemistry
	Mathematics	Physics
		Geology
3		Statistics
		Economics
		Commerce

S.N.	Major	Introductory Subject/ Minor
		Chemistry
		Mathematics
	Physics	Economics

4	C	Geography-
S.N.	Major	Introductory SubjecU Minor
		Botany
		Chemistry
		Mathematics
		Physics
5	Geology	Zoology
U	Geology	Anthropology
		Economics
		Geography
S.N.	Major	Introductory SubjecU Minor
		Botany/Plant Science
		Chemistry
		Mathematics
6	Fnvironm	Physics
0	ental	Zoology/Life Science
	Sciences	Biochemistry
	Sciences	Geography
		Computer Science

S.N.	I Major	Introductory SubjecU Minor
		Mathematics
		Economics
7	Ctatistics.	Geography
	Statistics	History
		Political Science
		Commerce

LIST OF VAC (Either 2/3 credits depends upon BoS recommendation)

SI.	Course Title	Course	Fotal
No.		Code	Credits
1	NSS		02
2	NCC		02
3	Ek Bharat ShresthaBharat		02
4	Environmental Ethics		02
5	Basic of Environmental		02
	Audits		
6	E- waste management		02
7	Solid waste management		02
8	Non-violence and world		02
	peace		
9	Digital marketing		02

10	Exercise, beauty & well	02
	ness	
11	Personality development	02
12	News reporting and	02
10	anchoring	02
13	Interpersonal skill	02
1.4	development	0.2
14	Soft skills	02
15	Cyber security	02
16	Documentary film making	02
17	Financial literacy	02
18	Banking services &	02
	Insurance	
19	Art of living and	02
	spiritualism	
20	IPR	02
21	Women empowerment	02
22	Local dance	02
	(Chhau/Nagpuri/etc.)	
23	Event management	02
24	Stress management	02
25	Web designing	02
2 <u>5</u> 26	Web development	02
20 27	Mobile app development	02
$\frac{27}{28}$	Tally accounting	02
20	Office automation	02
30	Data analysis	02
31	Basics of big data	02
37	Introduction to cloud	02
52		02
33	LoT(Basics only)	02
24	Croative writing	02
24 25	Value of games & anorte	02
<u>33</u> 26	First Aid in Day to day	02
30	Flist Ald III Day to day	02
27	Life Elementation and	02
51	Fioriculture and	02
20	Compative rehabilitation	02
38	Corrective renabilitation	02
39	Constitutional Values and	02
	Fundamental Duties	
40	Culture and Communication	02
41	Digital Empowerment	02
42	Emotional Intelligence	02
43	Yoga: Philosophy and Practice	02

44	Vedic Mathematics-I	02
45	The Art of Being Happy	02
46	Swachh Bharat	02
47	Sports for Life-I	02
48	Social and Emotional Learning	02
49	Reading Indian Fiction in English	02
50	Environmental and Society	02
51	National Cadet Corps-I	02
52	Ecology and Literature	02
53	Gandhi and Education	02
54	Ethics and Values in Ancient Indian Traditions	02
55	Fit India	02
56	Financial Literacy	02
57	Ethics and Culture	02
58	Environment and Society	02

Courses under Value Added, Summer Internship/ Apprenticeship/ Communityoutreach activities, etc., for all majors, may be of 2-credits or as appropriate

Courses from Other Disciplines (Multidisciplinary) (9 credits):

All UG students are required to undergo 3 introductory-level courses relating to any of the broad disciplines given below. These courses are intended to broaden the intellectual experience and form part of liberal arts and science education. Students are not allowed to choose or repeat courses already undergone at the higher secondary level (12th class)in the proposed major and minor stream under this category.

- i. Natural and Physical Sciences:
 Biology
 Botany
 Zoology
 Biotechnology
 Biochemistry
 Chemistry
 Chemistry
 Physics
 Biophysics
 Astronomy and Astrophysics
 Earth and Environmental Sciences, etc.
- ii. *Mathematics, Statistics, and Computer Applications:* Courses under this category will facilitate the students to use and apply tools and techniques in their major and minor disciplines. The course may include training in programming software like Python among others and applications software like STATA, SPSS, Tally, etc. Basic courses under this category will be helpful for science and social science in data analysis and the application of quantitative tools.
- iii. Library, Information, and Media Sciences: Courses from this category will help the students to understand the recent developments in information and media science (journalism, mass media, and communication)
- iv. Commerce and Management: Courses include

Business Management Accountancy Finance Financial Institutions Fintech, etc.,

v. Humanities and Social Sciences: The courses relating to Social Sciences:

Anthropology Communication and Media Economics History Linguistics Political Science Psychology Social Work Sociology, etc. will enable students to understand the individuals and their social behaviour, society, and nation. Students be introduced to survey methodology and available large-scale databases for India.

vi. The courses under humanities include

Archaeology History Comparative Literature Arts & Creative expressions Creative Writing and Literature, Language(s) Philosophy, etc. and interdisciplinarycourses relating to humanities.

vii. Interdisciplinarysubjects

Cognitive Science Environmental Science Gender Studies Global Environment & Health International Relations, Political Economy and Development Sustainable Development Women's and Gender Studies, etc.

Semest er	Disciplinary/Interdiscipl inary Core Courses (Maior)	Disciplinary/Inter disciplinary (Minor)	Multi/Inter disciplinary courses	Ability Enhancement	Skill Enhancement	Common Value added	Credits
	(80 Credit)	(32 credit)	(9 credit)	(8 credit)	(9 credit)	(06-08)	144+16
I	One IC1 for Science: (EAS/IB/CEL) course related to their discipline may be adjusted herewith One IC1 for Social	For Other Departments/ other specializations (For Science-IC1, For Humanities & SS-IC2) – (3)	From Other Departments (School) with multidisciplinary approach IC2	AEC1-English Communication (2)	SEC1-Fundamentals of Computer (3)	Water Harvesting/FE/FNF/ UM) (3)	22
	Science/Humanities: (UIC/UAIC/POE/PHR)		(For Science-IC2, For Humanities & SS-IC1) (3)	AEC2-Hindi /(MIL) Communication (2)		NSS/NCC/Sports/Fit ness (3)	

Credit Adjustment for the 1st Semester of Nov'22-March'23 Session as per Curriculum and Credit Framework (December-2022)

		As per UGC		Proposed Credit		
S.No.	Broad Category of Course	Minimum Credit Requirement		distribution (CUJ)		
		3-year UG	4-Year UG	3-year UG	4-Year UG	
1	Major (Core)- MJC/DSC	60	80	64	88	
2	Minor Stream- MNC/DSE	24	32	30	38	
3	Multidisciplinary-GE/OE	09	09	09	09	
4	Ability Enhancement Courses (AEC)	08	08	08	08	
5	Skill Enhancement Courses (SEC)	09	09	09	09	
6	Value Added Courses common for all UG- VAC	06 - 08	06-08	08	08	
7	Summer Internship	02 - 04	02-04	04	04	
8	Research Project / Dissertation	-	12	-	12	
	Total	120	160	132	176	

Proposed Credit Distribution to Award Degree under Each Category

Note:* Honours students' not undertaking research will do 3 courses for 12 credits in lieuof a research project / Dissertation

Semester- I

1)	Type of the Course	Disciplinary Core Course (Major-1)
2)	Name of the Course	Mechanics
3)	Course Code	PHY01101
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This subject aims to introduce some of the basic properties of one-dimensional motion and the dependence of force on position, velocity, and time. It is designed to teach the important concepts of two-dimensional motion like that of projectile motion and three important properties of matter.
8)	Programme/course Objectives	This course aims to provide students with a comprehensive understanding of matter and its basic properties. Students will learn about the gravitation, special theory of relativity, etc
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Understand the basic concepts of units and measurements, momentum, and energy. Describe the concepts of the special theory of relativity, laws of motion, and dynamics of rigid bodies. Learn about the elasticity, surface tension, gravitation, and viscosity. Apply the equation of motion to one or two dimensions of the system in order to understand the kinematics of the body under the various conditions of applied force.
10)	Who can attend /course audience	This course is suitable for students from physics background.
11)	Course eligibility/Pre- requisite	10+2 with science
12)	Course duration	One Semester
13)	Course Structure	

(i)	Unit-I	Units and measurements: System of units (CGS and SI), measurement of length mass and time dimensions of physical quantities dimensional	
		formulae. Minimum deviation, errors.	
		Momentum and Energy Work and energy Concernation of momentum	
		(linear). Conservation of energy with examples. Motion of rockets.	
(ii)	Unit-II		
		Laws of Motion: Newton's Laws of motion. Dynamics of single and a system	
		of particles. Centre of mass	
		Dynamics of Rigid bodies: Rotational motion about an axis, Relation between	
		torque and angular momentum, Rotational energy. Moment of inertia: M I of a	
		rectangular Lamina and solid cylinders. Flywheel, Theory of compound	
(iii)	Unit-III	Special Theory of Relativity: Constancy of speed of light. Postulates of	
()		Special Theory of Relativity. Length contraction. Time dilation. Relativistic	
		addition of velocities.	
14)	Text Books and		
	References:		
(i)	Properties of Matter	by Brijlal & Subramanyam	
(ii)	Mechanics Berkeley Physics Course, Vol.1: Charles Kittel, et.al. Tata McGraw-Hill 2007		
(iii)	Mechanics by, New Edition, D. S. Mathur, S.Chand & Co., 2000		
(iv)	Mechanics and Relativity by 3 rd Edition, Vidwan Singh Soni, PHI Learning Pvt. Ltd.		

1)	Type of the Course	Disciplinary Core Course (Major-2)
2)	Name of the Course	General Properties of Matter
3)	Course Code	PHY01103
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This subject aims to introduce some of the basic properties of one-dimensional motion and the dependence of force on position, velocity, and time. It is designed to teach the important concepts of two-dimensional motion like that of projectile motion and three important properties of matter.

8)	Programme/course Objectives		This course aims to provide students with a comprehensive understanding of matter and its basic properties. Students will learn about the gravitation, special theory of relativity, and will learn about properties of matter, like viscosity, surface tension etc
9)	Course features an	nd	Classroom teaching, conducting lab practical (hands on
	Learning Outcomes		 training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Understand the basic concepts of units and measurements, momentum, and energy. Describe the concepts of the special theory of relativity, laws of motion, and dynamics of rigid bodies. Learn about the elasticity, surface tension, gravitation, and viscosity. Apply the equation of motion to one or two dimensions of the system in order to understand the kinematics of the body under the various conditions of applied force. Apply knowledge in understanding the flow of liquid and surface tension applied on the surface of the liquid.
10)	Who can attend /course audience		This course is suitable for students from physics background.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Gravitation: Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's laws (statements). Satellite in a circular orbit	
(ii)	Unit-II	Elasticity: Hooke's law - Stress-strain diagram, elastic moduli-relation between elastic constants, Poisson's Ratio-expression for Poisson's ratio in terms of elastic constants. Work done in stretching and work done in twisting a wire-Twisting couple on a cylinder. Torsional pendulum-Determination of rigidity modulus and moment of inertia - q, η and σ by Searle's method.	
(iii)	Unit-III	Surface tension: Definition of surface tension. Surface energy, relation between surface tension and surface energy, pressure difference across curved surface example, excess pressure inside spherical liquid drop, angle of contact.Viscosity:Streamline, flow, turbulent, flow, equation, of continuity	
		determination of coefficient of viscosity by Poisulle's method, Stoke's	

		method.	
14)	Text Books and References:		
(i)	Mechanics Berkeley	Physics Course, Vol.1: Charles Kittel, et.al. Tata McGraw-Hill 2007	
(ii)	Mechanics by, New Edition, D. S. Mathur, S.Chand & Co., 2000		
(iii)	General properties of matter by Newman and Searle		
(iv)	General properties of matter by Chatterjee and Sengupta		

Semester- II

1)	Type of the Course	Disciplinary Core Course (Major Course-3)
2)	Name of the Course	Waves and Oscillations
3)	Course Code	PHY01102
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This is basic physics course which is intended to give an overview of Waves and Oscillations. After taking this course, students will gain knowledge about vibrations, waves, transverse vibrations in stretched string, Doppler effect and ultrasonics and to be able to apply this knowledge to solve certain typical problems in physics.
8)	Programme/course Objectives	In this course students would be able to understand the topics that make the basis of Physics of Waves and Oscillations such as Linear harmonic oscillator, damped harmonic oscillator, generation of harmonics, dispersion in wave propagation, Velocity of acoustic waves in isotropic solids, liquids and gas, Basic principles of generation and detection of ultrasonic waves.

9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Understand the Linear harmonic oscillator, damped harmonic oscillator, generation of harmonics,
			 Explain and apply the Linear equation of plane progressive wave motion in one, two and three dimension, expression for Doppler shift in frequency to solve various problems in physics. Understand the Basic principles of generation and detection of ultrasonic waves.
10)	Who can attend /co audience	ourse	This course is suitable for students of 2 nd semester with physics major.
11)	Course eligibili requisite	ty/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Vibrations Linear harmonic oscillator- differential equation and its solution, free and forced vibrations of a damped harmonic oscillator, resonance, sharpness of resonance. A pair of linearly coupled oscillators, eigen frequencies and normal modes, Lissajous figures, vibrations of a weakly an harmonic oscillator- generation of harmonics, frequency shift, basic principle underlying the production of combination tones.	
(ii)	Unit-II	Waves Linear equation of plane progressive wave motion in one, two and three dimension, plane wave and spherical wave solution, intensity of a plane Progressive wave, dispersion in wave propagation-group velocity and phase velocity.	
(iii)	Unit-III	Transverse vibrations in stretched string Wave equation in the linear approximation, eigen frequencies and eigen modes for plucked and struck strings, energy of transverse vibrations, bowed strings. Velocity of acoustic waves in isotropic solids, liquids and gases. Derivation of the respective expressions with explanation of the approximations made.	
(iv)	Unit-IV	Doppler effect and Ultrasonics Derivation of expression for Doppler shift in frequency, Basic principles	

		of generation and detection of ultrasonic waves.	
14)	Text Books and		
	References:		
(i)	Advanced Acoustics by D P Raychoudhury		
(ii)	Waves and oscillations, Berkeley Physics course		
(iii)	Waves and Oscillation by H G Pane		

1)	Type of the Course	Disciplinary Core Course (Major Course -4)
2)	Name of the Course	Vector Calculus
3)	Course Code	PHY01104
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This is basic physics course which is intended to give an overview of Vector Calculus. After taking this course, students will gain knowledge about vectors and scalars, differentiation and integration of vector, tensors, and curvilinear coordinate system and to be able to apply this knowledge to solve certain typical problems in physics.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of Mathematical Physics such as Vector differentiation and integration, gradient, divergence, curl and curvilinear coordinate system.
9)	Course features and Learning Outcomes	Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be

			 able to- Understand the Vector differentiation and integration and its application. Explain and apply the Gauss divergence theorem, stokes theorem and greens theorem to solve various problem in physics. Understand the Basic idea of curvilinear coordinate system 	
10)	Who can attend /course audience		This course is suitable for students of 2 nd semester with physics major.	
11)	Course eligibili requisite	ity/Pre-	10+2 with science	
12)	Course duration		One Semester	
13)	Course Structure			
(i)	Unit-I	Vectors Vectors depende addition	s and Scalars s algebra, unit vectors, rectangular unit vectors i, j, k, linear ence and linear independence, scalar field, vector field, vector n, scalar multiplication.	
(ii)	Unit-II	Vector Differentiation and Integration Transformation properties of vectors, scalar and vector products, differentiation and integration of vectors, concept of tensors, line integral, volume and surface integrals involving vector fields		
(iii)	Unit-III	Divergence Theorem, Stokes Theorem and Related Integral Theorems Gradient, divergence and curl of a vector field and their physical interpretations, Gauss divergence theorem, Stokes theorem, green's theorem-applications.		
(iv)	Unit-IV	Curvilinear Coordinates Orthogonal curvilinear coordinate systems, unit vectors in such systems, illustration by spherical and cylindrical polar coordinates. Gradient, divergence and curl in cylindrical and spherical polar Coordinate systems, basic identities involving gradient, divergence and curl. Application of vector calculus to various physical problems.		
14)	Text Books and References:			
(i)	Vector Analysis by 2 nd Edition (2009),	Murray Tata Mc	Murray R. Spiegel, Seymour Lipschutz and Dennis Spellman, Fata McGraw Hill Education private Limited, New Delhi	
(ii)	Mathematical meth	tical methods for physicists by Arfken and Weber.		

Semester- III

1)	Type of the Course	Disciplinary Core Course (Major Course -5)
2)	Name of the Course	Heat and Thermodynamics
3)	Course Code	PHY01201
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This is basic physics course which is intended to give an overview of Vector Calculus. After taking this course, students will gain knowledge about vectors and scalars, differentiation and integration of vector, tensors, and curvilinear coordinate system and to be able to apply this knowledge to solve certain typical problems in physics.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of Mathematical Physics such as Vector differentiation and integration, gradient, divergence, curl and curvilinear coordinate system.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Understand the Vector differentiation and integration and its application. Explain and apply the Gauss divergence theorem, stokes theorem and greens theorem to solve various problem in physics. Understand the Basic idea of curvilinear coordinate system

10)	Who can attend /course		This course is suitable for students of 3 rd semester with physics
	audience		major.
11)	Course eligibili requisite	ity/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Thermo Thermo Second scale of engines Enthalp thermoo Third la	dynamics: Microscopic vs. macroscopic view, dynamic equilibrium, Work, Heat and 1sr law of dynamics, Reversible, Irreversible and quasi-static process, law, Carnot's cycle and Carnot's theorem, Thermodynamic E. Temperature, Entropy, T-S diagram, TdS equations, Heat , Refrigerators, Thermodynamic functions, Internal energy, y, Helmholtz function and Gibb's free energy, Maxwell's dynamic equations and their applications, Nernst heat theorem, w of thermodynamics.
(ii)	Unit-II	Kinetic der Was Radiatie Jean's I	Theory: Basic concepts, Maxwell distribution, Equation of state, als equation,Brownian motion. on: The blackbody spectrum, Wien's displacement law, Rayle aw, Planck's quantum theory of radiation.
(iii)	Unit-III	Gradier interpre theorem	at, divergence and curl of a vector field and their physical tations, Gauss divergence theorem, Stokes theorem, green's n-applications.
(iv)	Unit-IV	Viscosi Einstein Nature Equation law of limitation	ty, thermal conduction and diffusion in gases, Brownian mon's theory, Perrin's work determination of Avogadro number. of intermolecular interaction, isotherms of real gases, van der-Waan of state, olther equations of state, critical constants of a gas, corresponding states, virial coefficients, Boyle temperature, ons of van der-Waal's equation of state.
14)	Text Books and References:		
(i)	Heat and Thermodynamics: K.W. Zeemansky		
(ii)	Heat and Thermodynamics: BrijLal and N. Subramanyam		
(iii)	A Treatise on Heat: M.N. Saha and B.N. Srivastava.		
(iv)	Feynman Lectures first volume		

(v) Thermal Physics: B.K. Agarwal	(v)
-----------------------------------	------------

1)	Type of the Course	Disciplinary Core Course (Major Course -4)
2)	Name of the Course	OPTICS
3)	Course Code	PHY01203
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This is basic physics course which is intended to give an overview of Vector Calculus. After taking this course, students will gain knowledge about vectors and scalars, differentiation and integration of vector, tensors, and curvilinear coordinate system and to be able to apply this knowledge to solve certain typical problems in physics.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of Mathematical Physics such as Vector differentiation and integration, gradient, divergence, curl and curvilinear coordinate system.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Understand the Vector differentiation and integration and its application. Explain and apply the Gauss divergence theorem, stokes theorem and greens theorem to solve various problem in physics. Understand the Basic idea of curvilinear coordinate system
10)	Who can attend /course audience	This course is suitable for students of 3^{rd} semester with physics major.
	audicitée	

11)	Course eligibil requisite	ity/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Interfer Sinusoi Interfer coherer Interfer thin fil interfer	ence: Wavepropagation,1-0and3Ddimensional wave equations, dal waves, Phase and Group velocities; Superposition of waves, ence by division of wavefront, Concept of spatial and temporal ace; Interference by division of wavefront: Fresnel Biprism, ence by division of amplitude: Anti-reflecting films; Colour of lms; Newton's rings; Michelson interferometer. Fabry Perot ometer, Resolution and Free spectral range
(ii)	Unit-II	Diffrac circular grating, plate, d	tion: Fraunhofer diffraction: diffraction by a single slit, double aperture; Resolving power of microscopes and telescopes; Diffrac , Resolving power and Dispersive power, Fressnel diffraction: Z iffraction due to straight edge
(iii)	Unit-III	Polariza Brewsto Interfer Analysi Fermat	ation: Concept of linear, circular and elliptical polarizations; er's law and Malus's law; Double refraction by crystals; ence of polarized light, half wave and quarter wave plates; is of polarized light; Kerr effect, Pockel's effect, Faraday effect, s Principle, Ray equation and its solution
14)	Text Books and References:		
(i)	Physical Optics: B.K.Mathur and T.P. Pandya.		
(ii)	A Textbook of Optics: N. Subrahmanyam, Brijlal and M.N.Avadhanulu		
(iii)	Geometrical and Physical Optics: Longhurst.		
(iv)	Optics: Ajoy K. Ghatak		
(v)	Optics:P.K. Srivastav		

LISU OF E	(Aperments to be performed in the Laboratory (Credits 2)
1.	Experiments on tracing of electric and magnetic flux lines for standard
2.	Determination of components of earth's magnetic field using a Ballistic
3.	Determination of capacitance of a condenser using B.G.
4.	Determination of high resistance by leakage using B.G.
5.	Determination of mutual inductance using BG.
6.	Charging and discharging of a capacitor (energy dissipated during charging and time
	constant measurements.
7.	Series and parallel resonance circuits (LCR circuits).
8.	Impedance of series RC circuits- determination of frequency of AC.
9.	Study the characteristics of a series RC and RL Circuit.
10.	Determination of self-inductance of a coil.
11.	Verification of laws of combination of capacitances and determination of unknown capacitance using de - Sauty bridge.
12.	Determination of BH using Helmholtz double coil galvanometer and potentiometer.

List of Experiments to be performed in the Laboratory (Credits 2)

SEMESTER-IV

1)	Type of the Course	Disciplinary Core Course (Major Course -7)
2)	Name of the Course	Classical Physics
3)	Course Code	PHY01202
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course, which concentrates on classical physics and special relativity, is normally taken by physics majors in their under-graduation. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also

			provides a brief introduction to some concepts of Newtonian mechanics and special relativity.
8)	Programme/course Objectives		• This course on classical dynamics aims to train the student in problem solving ability and develops understanding of physical problems. The emphasis of this course is to enhance the understanding of Classical Mechanics (Lagrangian and Hamiltonian Approach).
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Upon completion of this course, students are expected to- Understand the physical principle behind the derivation of Lagrange and Hamilton equations, and the advantages of these formulations. Understand the intricacies of motion of particle in central force field. Critical thinking and problemsolving skills. Solve the problems of relativity.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 4 th semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Constr System Configu Genera principi Lagran Lagran systems electro- laws, C simple	ained Motion: of particles, Constraints, Degrees of Freedom and uration space. Constrained system, Forces of constraint, lised coordinates, Principle of Virtual work and D'Alembert's le. Agian Formalism: ge's equation, Lagrangian for conservative & non-conservative s, Lagrange's equation of motion, Velocity dependent potential of omagnetic field, Cyclic coordinates, symmetries and conservation Calculus of Variation, Hamilton's principle, Lagrangian for systems, Lagrange's undetermined multipliers, Lagrange's

on, Phase		
n, Phase systems		
systems		
space, Hamiltonian for conservative & non-conservative systems,		
Physical significance of Hamiltonian, Hamilton's equation of motion,		
niltonian		
nates and		
Canonical		
s, related		
problems.		
ne body		
wer law		
Classical Mechanics: H. Goldstein.		
Classical Mechanics : J C Upadhyaya		
Introduction to Classical Mechanics: N. C. Rana and P. Joag.		
Introduction to Special Relativity : Robert Resnick		

1)	Type of the Course	Disciplinary Core Course (Major Course -8)
2)	Name of the Course	Mathematical Physics –I
3)	Course Code	PHY01204
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This is basic physics course which is intended to give an overview of mathematical methods used in physical sciences. After taking this course, students will gain knowledge of series, Fourier analysis, distributions, vectors, tensors, complex analysis, and multidimensional integrals, and to be able to apply this knowledge to solve certain typical problems in physics.

8)	Programme/course		This subject explains about the mathematical tools that
	Objectives		are useful to get the solution of physical problems. The
	Ū		subject covers the important topics that make the
			interpretation of physics easy.
9)	Course features ar	nd	Classroom teaching, conducting lab practical (hands on
	Learning Outcomes		training). Audio video lecture using ICT. Online faculty for
			query solving.
			On successful completion of the module students should
			be able to-
			 Solve definite integrals using residue theorem. Understand knowledge shout Fourier Transforms and
			Onderstand knowledge about Fourier Transforms and Application of Fourier Transforms to differential
			equations
			• Explain the Laplace Transform (LT) of Elementary
			functions and properties of LTs.
			• Solve differential equations using the Laplace Transform.
			• Establishing the limitations, advantages, and disadvantages
			of numerical method
10)	Who can attend /c	ourse	This course is suitable for students from Physics. CUJ Students of 4 th
	audience		Semester can attend the course.
11)	Course eligibili	ity/Pre-	10 ± 2 with science
11)	requisite	lty/110-	10+2 with selence
	requisite		
12)	Course duration		One Semester
13)	Course Structure		
		~ .	
(i)	Unit-I	Compl	ex Analysis
		Brief	Revision of Complex Numbers and their Graphical
		Comple	A Numbers Euler's formula, De Morvie's theorem, Roots of
		Cauchy	-Riemann Conditions Examples of analytic functions Singular
		function	ns: poles and branch points, order of singularity, branch cuts.
	Integra		tion of a function of a complex variable. Cauchy's Inequality.
		Cauchy	's Integral formula. Simply and multiply connected region.
		Laurent	t and Taylor's expansion. Residues and Residue Theorem.
(Applica	ation in solving Definite Integrals.
(ii)	Unit-II	Integra	als Transforms: Fourier Transforms: Fourier Integral theorem.
		Fourier	Iransform. Examples. Fourier transform of
		trigono	metric, Gaussian, finite wave train & other functions.
		keprese	entationol Dirac della lunction as a Fourier Integral. Fourier
		theorem	ni or derivatives, inverse rourier transform, Convolution
		comple	x conjugation etc.) Three dimensional Fourier transforms with
		example	es Application of Fourier Transforms to differential equations:
(ii)	Unit-II	 Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite Integrals. Integrals Transforms: Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representationof Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: 	

		One dimensional Wave and Diffusion/Heat Flow Equations.	
		Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits	
(iii)	Unit-III	Errors in numerical Calculations : Absolute, Relative and Percentage e General Error, Error in series approximation.	
		Solutions of Algebraic and Transcendental Equations : Bisection method, position method, Newton-Raphson Method, Picard's iteration method.	
		Linear systems of equations : Consistency of Linear System of equations, Solu of Linear Systems by direct method: Guassian elimination and computation inverse of a matrix, Method of Factorization, Solutions of linear systems by item methods: Jacobi method, Gauss-Siedel method.	
(iv)	Unit-IV	Interpolation and curve fitting : Errors in Polynomial interpolation, I differences, Differences of a polynomial, Newton's forward and back interpolation, Central differences, Gauss, Stirling, Bessel's and Everett's Form Lagrange's Interpolation formula. Numerical differentiation and integration: Numerical differentiation, New	
		Cotes Integration formula, Numerical integration by Trapezoidal rule, Simpson	
14)	Treef Decles and	Simpson's 3/8, and Romberg Integration.	
14)	References:		
(i)	Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press		
(ii)	Mathematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications		
(iii)	Complex Variables, A.S.Fokas & M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press		
(iv)	First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett		
(v)	Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw- Hill		

1)	Type of the Course	Disciplinary Core Course (Major Course -7)
2)	Name of the Course	Quantum Mechanics
3)	Course Code	PHY01206
4)	Total Credit	L-T-P=4-0-0=4

5)	Floated by/Proposed b	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course discusses how quantum theory arose in the facertain discrepancies between 19th-century classical thand experiment. It tries to impart a set of mathematical needed to formulate problems in quantum mecha introducing methods of theoretical physics required to set them as needed.
8)	Programme/course Objectives	After learning the elements of modern physics, in this course, students would be exposed to more advanced concepts in quantum physics.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. The students will be able to learn the following from this course: Basics of quantum Mechanics. Methods to solve time-dependent and time-independent Schrodinger equation and its applications. Quantum mechanics of simple harmonic oscillator. Non-relativistic hydrogen atom: spectrum and eigen functions
10)	Who can attend /cours audience	This course is suitable for students from Physics. CUJ Students of 4 th Semester can attend the course.
11)	Course eligibility/H requisite	Pre- 10+2 with science
12)	Course duration	One Semester
13)	Course Structure	
(i)	Unit-I Lin Sta and Su Sta Co Sta	near vector space ate space, Dirac notation and Matrix Representation of State Vectors d operators, Concept of Kets, Bras and Operators, Expectation Values, perposition Principle, Orthogonality, Completeness, Expansion of ate Vector, Non-commutating Observables, Uncertainty Relations, ommutation and Compatibility, Change of basis, Unitary operators. ate function and its interpretation, Continuous Basis. Relation between

		a State Vector and its Wave function. Heisenberg matrix mechanics and	
		Oscillator with Operator Method Coherent States	
(ii)	Unit-II	Identity	
		symmetric and antisymmetric wave functions, Exchange Degeneracy, Particle Exchange Operator, Distinguishability of identical particles, Pauli's exclusion principle and Slater's determinant, Electron spin hypothesis and Pauli's spin matrices for electron, eigen values and eigen function, density operator and density matrices, symmetric and	
		antisymmetric function of hydrogen molecule. Interaction Picture.	
(iii)	Unit-III	Angular momentum in Quantum Mechanics	
		Generalized angular momentum- Infinitesimal rotation, Generator of rotation, Commutation rules, Ladder operators, Eigen values and eigen functions, Matrix representation of angular momentum operators, Coupling of two angular momentum operators, Addition of angular momentum, Clebsch Gordon coefficients and Applications, Wigner- Eckart theorem, Central force problem; Solution of Schrödinger equation for spherically symmetric potentials; application in Hydrogen atom.	
(iv)	Unit-IV	Approximation methods	
		Time-independent perturbation theory for non-degenerate and degenerate states. Applications: Anharmonic oscillator, Helium atom, Stark effect in hydrogen atom, Variational methods: Helium atom. Time-dependent perturbation theory; Harmonic perturbation; Fermi's golden rule; Adiabatic and sudden approximations. Semi classical theory of radiation; Transition probability for absorption and induced emission; Electric dipole and forbidden transitions; Selection rules.	
		Variational method; Helium and its excited states, Wentzel–Kran Brillouin (WKB) approximation; Central field approximation and tho fermi model of atoms, Hartree-Fock method of self consistent field and er state, Born approximation.	
14)	Text Books and References:		
(i)	David J. Griffiths, I	Introduction to Quantum Mechanics	
(ii)	Nouredine Zettili, Quantum Mechanics: Concepts and Applications		
(iii)	B Crasemann and J.D. Powell, Quantum Mechanics (Addison Wesley)		
(iv)	J.J. Sakurai, Modem Quantum Mechanics		
(v)	Mathews and Venkatesan, Quantum Mechanics		

SEMESTER-V

1)	Type of the Course	Disciplinary Core Course (Major Course -10)
2)	Name of the Course	ELECTRONICS-I
3)	Course Code	PHY01301
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course, which concentrates on classical physics and special relativity, is normally taken by physics majors in their under-graduation. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of Newtonian mechanics and special relativity.
8)	Programme/course Objectives	• This course on classical dynamics aims to train the student in problem solving ability and develops understanding of physical problems. The emphasis of this course is to enhance the understanding of Classical Mechanics (Lagrangian and Hamiltonian Approach).
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Upon completion of this course, students are expected to- Understand the physical principle behind the derivation of Lagrange and Hamilton equations, and the advantages of these formulations. Understand the intricacies of motion of particle in central force field. Critical thinking and problem-solving skills. Solve the problems of relativity.

10)	Who can attend /course		This course is suitable for students from Physics. CUJ Students
	audience		of 5 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Semico characto Bipolar CC co Classifi MOSFI	nductor devices: Semiconductor diodes: pn junction, eristics, application in rectifiers, Zener diode and its applicat Junction Transistor BJT): pnp and npn transistors, CB, CE onfigurations, Emitter follower. Field Effect Transistor (F ication, construction, characteristics and biasing of JFET, Ide ET.
(ii)	Unit-II	Analog push-pu ve), vo of oscil phase-s	Circuit: Small signal amplifiers, tuned voltage amplifier, ill amplifiers, power amplifiers, feedback amplifier (+ve and - ltage and current series feedback circuits, Barkhausen criterion lations, tuned collector oscillator, Hartley / Colpitt oscillator, hift oscillator and multivibrators.
(iii)	Unit-III	Operational amplifiers: Block diagram, characteristics, offset parameters, slew rate, CMRR, open loop and close loop gain, inverting and non-inverting amplifier, Application of OPAMP in mathematical operations (addition, integration and differentiation). Modulation: Need and types, amplitude modulation, analyses of AM wave, modulator, demodulator circuits. Digital circuits: Binary numbers, binary-to-decimal conversion, Logic gates (AND, OR, NOT, NOR and NAND) and their realization using diodes and transistor, Booleanalgebra, Boolean equation of logic circuits, DeMorgan theorem, Method of realizing a circuit for a given truth table, Sum of product (SOP and Product of sum (POS) representations, Karnaugh map and simplification (elementary idea), Half adder 'and Full	
14)	Text Books and References:		
(i)	P.Horowitz and W.Hill, The Art of Electronics.		Art of Electronics.
(ii)	R.Gayakwad,Op-AmpsandLinearIntegrated Circuits, 4thEd		
(iii)	P.Malvino and D.P. Leach, Principle of Digital Electronics.		
(iv)	T.L.Floyd,Electronic Devices		
(v)	D.R.ChoudharyandS.B. Jain, LinearIntegrated Circuits		

1)	Type of the Course	Disciplinary Core Course (Major Course 11)
2)	Name of the Course	Electricity and Magnetism
3)	Course Code	PHY01303
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• Electricity and Magnetism is a one-semester, calculus- based, college-level physics course, especially appropriate for students planning to specialize or major in one of the physical sciences or engineering. Students cultivate their understanding of physics through classroom study and activities as well as hands-on laboratory work as they explore concepts like change, force interactions, fields, and conservation.
8)	Programme/course Objectives	• The course describes electrostatics, magneto-statics and optics in such a way that students would be able to apply theories of static and moving charges and extend its applications to instruments involving electric and magnetic fields and to give idea on the fundamentals of electromagnetic conduction and electromagnetic waves.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Recognize basic terms in electricity and magnetism. Understand the laws of electrostatics and magnetostatics. Apply theorems to construct and solve electrical circuits. Design and conduct experiments as well as to analyze and interpret data. Understand the Coulomb's law, Gauss's law, Laplace's equation, electric fields in matter, multipole expansion. Gain knowledge about steady current, charge conservation. Ohm's law, electrical conduction in

			 metals and semiconductors. Understand the Biot-Savart's law, Ampere's law, Vector potential, Vector potential for a circular current loop, Lorentz force, Magnetic moment and Multipole expansion of vector potential. Understand Magnetization in materials, methods of solving boundary value problems in magnetostatics, field of a permanent magnet, uniformly magnetized sphere and magnetic energy. Understand the inference and diffraction of light and their applications.
10)	Who can attend /co audience	ourse	This course is suitable for students from Physics. CUJ Students of 5 th semester can attend the course.
11)	Course eligibilit requisite	ty/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Electro Electric Charge Energy of Gauss energy Conduc Method spherica	statics charge, Conservation of charge, Coulomb's law, Electric f distribution, Flux and Gauss's law and applications. Electric Poter associated with an electric field, Gauss's theorem and differential ss's theorem, The Curl of electric field and Stokes' theorem, Work in electrostatics, Laplace's equation in one, two and three dimens tors and insulators, boundary conditions and uniqueness theo of images, Separation of variables in Cartesian, cylindrical al coordinates, Multipole expansion, Polarization
(ii)	Unit-II	Electric currents and fields of moving charges Electric current and current density, Ohm's law, electrical conduction in metals and semiconductors, Circuits and circuit elements, Energy dissipation in current flow, Electromotive force, Magnetic Circuits And Induction: Magnetic Circuits, Magnetic Materials and their properties, static and dynamic emfs and force on current carrying conductor, AC operation of Magnetic Circuits, Hysteresis and Eddy current losses.	
(iii)	Unit-III	Magnet Biot-Sav Determi magnetic moment Magneti electrom	ostatics vart's law, Ampere's law and it's applications, Vector potential, nation of vector potential from Biot-Savart's law, Force due to c fields; Lorentz force, Force on a dipole in an external field, Magnetic , Multipole expansion of vector potential, Magnetization in materials, c boundary conditions, The field of a permanent magnet, nagnetic induction.

14)	Text Books and References:		
(i)	Introduction to classical electrodynamics - Griffiths.		
(ii)	Classical electrodynamics Third Edition -John David Jackson		
(iii)	Electricity and Magnetism - Edward M. Purcell Berkeley Physics Course, Vol. 2		

1)	Type of the Course	Disciplinary Core Course (Major Course -9)	
2)	Name of the Course	Solid State Physics	
3)	Course Code		
4)	Total Credit	L-T-P=4-0-0=4	
5)	Floated by/Proposed by	Department of Physics	
6)	Who can teach this course	Faculties from Physics	
7)	Overview	• Solid-state physics is the most important when it comes to understand the materials we are surrounded with. This course will help to investigate how the large-scale properties of solid materials result from their atomic-scale properties.	
8)	Programme/course Objectives	• This course aims to give insights of basics of solid state physics by covering the important topics like crystal structure, band structure of solids, lattice vibrations and quantum transport needed to expertise the field.	
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. At the end of this course the student will be able to: Understand the crystal structure using reciprocal spaces. Understand terminologies like Free electron gas, Particles and holes. Learn and able to use the Density functional theory. Explain the Bloch-Boltzmann semi-classical transport theory. This course is suitable for students from Physics. CUJ Students of 5th 	
	audience	Semester can attend the course.	
11)	Course eligibility/Pre-	10+2 with science	
	requisite		
-------	---	---	--
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Crystal Chemic Recipro Fermi li Free el guasipa	Structure: cal bonding, Crystal lattices and symmetry groups, Real space vs. ocal space, Fourier analysis, Crystal X-Ray diffraction iquid: ectron gas, Particles and holes, Adiabatic mapping to Landau articles
(ii)	Unit-II	Band S Metals, Semico Lattice Normal Quantu Phase 7 Broken phase	 tructure of Solids: Fermi surface, Density functional theory, Insulators, nductors, Doping, Examples: Graphite and Carbon nanotubes Vibrations: modes, Phonons, Specific Heat, Thermal Conductivity, m theory of neutron scattering Fransitions and Many-Body Phenomena symmetries and classifications of phases, Classical vs. Quantum transitions, Mermin-Wagner theorem, Mott and Anderson
(iii)	Unit-III	insulate Classi Dynan transpo transpo Transis Divider	cal and Quantum Transport nics of Bloch electrons, Bloch-Boltzmann semi-classical ort theory, Magnetotransport and the Hall Effect, Quantum ort in nanostructures stor biasing and Stabilization circuits: Fixed Bias and Voltage Bias. Thermal runaway, stability and stability factor. Transistor
(iv)	Unit-IV	as a two Amplif model. Advant Amplif GBW p Special operation common	 p-port network, h-parameter equivalent circuit for CE. ier: Small signal analysis of single stage CE amplifier using re- Input and Output impedances, Current and Voltage gains. ages of CC amplifier. Types of coupling, two stage RC Coupled ier – circuit, working and its Frequency Response, loading effect, oroduct, Darlington transistor, Current gain. semiconductor devices: LED, LCD and solar cell – construct on and applications, 7-segment display, concept of common anode n cathode types.
14)	Text Books and References:		
(i)	G. Grosso and G. (notes of Ch 1. and	P. Parra Ch 2.)	vicini, Solid State Physics (Academic Press, San Diego, 2000).
(ii)	L. Mihály and M.	C. Martii	1, Solid State Physics Problems and Solutions (Wiley, New York,

	1996)
(iii)	C. Kittel, Introduction to Solid State Physics, (8th edition, Willey & Sons, New York, 2005).
(iv)	E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge University Press, Cambridge, 2003).
(v)	N. W. Ashcroft and N. D. Mermin, Solid State Physics (International Thomson Publishing, 1976).

SEMESTER-VI

1)	Type of the Course	Disciplinary Core Course (Major Course -13)
2)	Name of the Course	NUCLEAR PHYSICS
3)	Course Code	PHY01302
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course, which concentrates on classical physics and special relativity, is normally taken by physics majors in their under-graduation. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of Newtonian mechanics and special relativity.
8)	Programme/course Objectives	• This course on classical dynamics aims to train the student in problem solving ability and develops understanding of physical problems. The emphasis of this course is to enhance the understanding of Classical Mechanics (Lagrangian and Hamiltonian Approach).
9)	Course features and Learning Outcomes	Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Upon completion of this course, students are expected to- • Understand the physical principle behind the derivation of Lagrange and Hamilton equations, and the

			advantages of these formulations.
			• Understand the intricacies of motion of particle in central force field. Critical thinking and problem-
			solving skills.
			• Solve the problems of relativity.
10)	Who can attend /c audience	ourse	This course is suitable for students from Physics. CUJ Students of 6 th semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Nuclea	r Structure and Basic nuclear properties
		Mass,	Charge, Nuclear size and shapes, nuclear spin, parity, nuclear and
		momen	tum, nuclear magnetic moment, Packing fraction, mass defect
		mass m	umber binding energies of nuclei (plot of B/A against A) natur
		nuclear	forces.
(ii)	Unit-II	Elemer	ntary Ideas of alpha, Beta and Gamma Decays
		α-decay	v, Range of α -particle, Geiger-Nuttal law and α -particle-spectra,
		Gamow	theory of α -decay, β -decay, β -energy spectra and neutrino
		convers	ion
(iii)	Unit-III	Compound nucleus and Nuclear Reactions	
		Types of	of nuclear reactions and conservation laws, concept of compound
		direct r	eactions, compound nucleus, Q-value of the nuclear reaction, nu
		cross-se	ection, nuclear energy, nuclear fission, nuclear reactors, type
		nuclear	fusion reactors
		Nuclea	r models
		Yukawa	a's Meson theory of nuclear forces and discovery of pion, Liquid
		model,	Weizsacher's semi-empirical mass-formula, Shell Model and m
		number	s, Predictions of the Shell Model
		Interact	ion between particles and matter photoelectric effect. Compton effect
		pair pi	oduction, ionization counter, Geiger-Muller counter, scintill
		counter	, solid state or semiconductor detectors, Compton suppre
		german	ium detectors, Cloud and Bubble chambers, Spark chambers
14)	Text Books and		
	keierences:		
(i)	Concepts of nuclear physics by Bernard L. Cohen (New Delhi: Tata McGraw Hill, 1998).		

(ii)	Concept of Modern Physics by Arthur Beiser (McGraw-Hill Book Company, 1987)
(iii)	Nuclear Physics by R. R. Roy and B.P. Nigam
(iv)	Nuclear Physics-An Introduction by S. B. Patel
(v)	Nuclear Physics by D.C. Tayal
(vi)	Introductory Nuclear Physics by P.E. Hodgson

1)	Type of the Course	Disciplinary Core Course (Major Course -14)
2)	Name of the Course	ATOMIC AND MOLECULAR PHYSICS-I
3)	Course Code	PHY01304
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course, which concentrates on classical physics and special relativity, is normally taken by physics majors in their under-graduation. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of Newtonian mechanics and special relativity.
8)	Programme/course Objectives	• This course on classical dynamics aims to train the student in problem solving ability and develops understanding of physical problems. The emphasis of this course is to enhance the understanding of Classical Mechanics (Lagrangian and Hamiltonian Approach).
9)	Course features and	Classroom teaching, conducting lab practical (hands on

10)	Learning Outcomes Who can attend /course audience		 training). Audio video lecture using ICT. Online faculty for query solving. Upon completion of this course, students are expected to- Understand the physical principle behind the derivation of Lagrange and Hamilton equations, and the advantages of these formulations. Understand the intricacies of motion of particle in central force field. Critical thinking and problemsolving skills. Solve the problems of relativity. This course is suitable for students from Physics. CUJ Students of 6th semester can attend the course.
11)	Course eligibili requisite	ity/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Atomic Rutherf orbits, I Spectra Ritzcon	e structure Ford model of atom and its drawbacks, Bohr atom model, Elec Energy levels and spectra, Effect of nuclear motion on atomic spe of hydrogen-like atoms, Bohr's correspondence princ nbinationprinciple, Bohr-Sommerfeld Theory
(ii)	Unit-II	Atoms in Electric and Magnetic Fields Electron Angular Momentum.Space Quantization, Electron Spin and Angular Momentum.Larmor's Theorem. Spin Magnetic Moment, S Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton. Atom External Electric and Magnetic Fields (qualitative discussion only):No and Anomalous Zeeman Effect, Paschen Back and Stark Effect; Clas theory of normal Zeeman effect.	
(iii)	Unit-III	Many e	electron atoms
		Pauli's couplin Momen Symbol	Exclusion Principle, Periodic table, Fine structure, Spin orbit g, Spectral Notations for Atomic States, Total Angular tum, Vector Model, L-S and J-J couplings, Hund's Rule, Term s, Spectra of Alkali Atoms, Clebsch-Gordon coefficients
(iv)	Unit-IV	Molecu Introdu	lar Spectra ction, Theory of the origin of pure rotational spectra of a diat

		molecule as a rigid rotator and as a non-rigid rotator, isotope effect, Ra
		Effect, Experimental study, Characteristics of Raman Lines, Classical
		Quantum theory of Raman Effect
14)	Text Books and	
	References:	
(i)	Concepts of Modern P	hysics 4thedition Arthur Baiser (Mc-Graw Hill International edition)
(ii)	Introduction to Atomic	spectra H. E. White (Mc-Graw Hill International edition)
(iii)	Fundamentals of Mol	ecular spectroscopy C.N.Banwell and E.M.McCash (Mc-Graw Hill International
	edition)	
(iv)	AtomicPhysicsJ. B. Ra	jam (S.Chand& Co.)
1		

1)	Type of the Course	Disciplinary Core Course (Major Course -15)
2)	Name of the Course	Statistical Physics
3)	Course Code	PHY01306
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This is an introductory course on Statistical Mechanics Thermodynamics given to 5th semester undergraduates. subject provides the student with an graduate level founds for any research involving thermodynamics and statis mechanics. This includes the theoretical basis, inclu- quantum statistics, for more advanced topics.
8)	Programme/course Objectives	• The aim of this course is to impart knowledge of thermal physics and electronic devices by covering core topics of laws of thermodynamics, heat transfer, entropy, Maxwell's thermodynamic relations, and kinetic theory of gases, radiation.
9)	Course features and Learning Outcomes	Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to • Explain the basic concepts of laws of thermodynamics,

			 entropy, and state functions. Describe the basic concepts of thermodynamics potentials and Maxwell's thermodynamic relations. Understand and use the kinetic theory of gases and radiation. Solve problems based on heat transfer, entropy, and thermal radiation.
10)	Who can attend /c audience	ourse	This course is suitable for students from Physics. CUJ Students of 6 th semester can attend the course.
11)	Course eligibil requisite	ity/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Therm Free E Applica Temper demagr	odynamic Potentials: Internal Energy, Enthalpy, Helmholtz nergy, Gibb's Free Energy. Their Definitions, Properties and ations. Surface Films and Variation of Surface Tension with rature. Magnetic Work, Cooling due to adiabatic netization.
(ii)	Unit-II	Maxwe Maxwe Clausiu Effect a	ell's Thermodynamic Relations: Derivations and applications of ll's Relations (1) First order Phase Transitions with examples, s-Clapeyron Equation (2) Values of Cp-Cv (3)Joule-Thomson and J-T coefficient(Derivation) for Vander Walls gas.
(iii)	Unit-III	Kinetic Boltzm RMS a Equipar Radiat density law, de from Pl	e Theory of Gases: Distribution of Velocities: Maxwell- ann Law of Distribution of Velocities in an Ideal Gas: Mean, and Most Probable Speeds. Degrees of Freedom, Law of rtition of Energy (no derivation). Specific heats of Gases. ion: Blackbody radiation, spectral distribution, concept of energy and pressure of radiation (no derivation). Derivation of Planck's duction of Stefan-Boltzmann law and Wien's displacement law anck's law.
(iv)	Unit-IV	Macros accessil Phase t space a particle Concep ensemb include Thermo	 state & Microstate: Macrostate, Microstate, Number of ble microstates and Postulate of equal a priori. Phase space, rajectory, Volume element in phase space, Quantization of phase nd number of accessible microstates for free particle in 1D, free in 3D & harmonic oscillator in 1D. ot of Ensemble: Problem with time average, concept of le, postulate of ensemble average and Liouville's theorem (proof d). Micro Canonical, Canonical & Grand Canonical ensembles. odynamic Probability, Postulate of Equilibrium and Boltzmann / relation.

14)	Text Books and References:		
(i)	B.B.Laud, "Fundamer	ntalsofStatisticalMechanics",NewAgeInternationalPrivateLimited,2020,2e	
(ii)	Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, TataMcGraw-Hill		
(iii)	Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill		
(iv)	F.Reif, "StatisticalPhysics(InSIUnits):BerkeleyPhysicsCourseVol5", McGrawHill, 2017, 1e		
(v)	Modern Thermodyna	mics with Statistical Mechanics, Carl S. Helrich, 2009, Springer	

Atomic and Molecular physics (Lab) (Credits 2)

- 1. To determine Planck's constant by Cs photocell.
- 2. To determine Planck's constant by LED method.
- 3. Measurement of e/m of electron.
- 4. To determine the wavelengths of Blamer series in the visible region from hydrogen emission.
- 5. To Determine the Rydberg constant.
- 6. Study of the characteristic of a G.M. Tube and determination of its operating voltage, plateau length/slope etc
- 7. Determination of Linear & mass attenuation coefficient using gamma source (for Aluminium, Lead & Copper) using Geiger Muller (G. M.) detector or End Window Gieger Muller (G.M.) Detector.
- 8. Determination of Efficiency of the G.M. Detector using (a) Gamma Sources & (b) Beta Sources .
- 9. To measure experimentally the mass absorption coefficient of lead for 662 KeV gamma ray.
- 10. Determination of Efficiency of the Scintillation Detector using standard Gamma Sources.
- 11. Qualitative observation of the Compton Effect.
- 12. Verification of Inverse square Law for γ -rays.
- 13. Study of Cs-137 spectrum and calculation of FWHM & resolution for a given scintillation detector.
- 14. Study of Co-60 spectrum and calculation of resolution of detector in terms of energy.

Semester-VII

1)	Type of the Course	Disciplinary Core Course (Major-16)
2)	Name of the Course	Advanced Quantum Mechanics
3)	Course Code	PHY01401
4)	Total Credit	L-T-P=4-0-0=4

5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• Quantum mechanics is an important tool to understand at the theoretical level the electronic structure of materials, thermodynamics, and other important phenomenons. Advanced Quantum Theory is a concised, comprehensive, well-organized text based on the techniques used in theoretical elementary particle physics and extended to other branches of modern physics as well.
8)	Programme/course Objectives	• This course aim to develop an understanding of the advance quantum mechanics. The aim of the course is that the students acquire in-depth knowledge about the foundations of quantum mechanics, as well as skills in applying quantum mechanics in advanced problems.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. At the end of this course the student will be able to: Understand Klein-Gordon, Dirac relativistic equation and α and β matrices Understand Negative energy state and negative probability density, Representation and properties Dirac gamma (γ) matrices Learn the features the Dirac particle in an external electromagnetic field. Learn the fundamentals Lagrangian field theory, Euler–Lagrange equations, Hamiltonian formalism and The complex Klein-Gordon field: complex scalar field Learn about Dirac's hole theory and charge conjugation. Feynman-Stuckelberg interpretation of antiparticles.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 7 th Semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science
12)	Course duration	One Semester
13)	Course Structure	

(i)	Unit-I	Relativistic Notations, The Klein-Gordon equation, Physical	
		interpretation, Probability current density & Inadequacy of Klein-	
		Gordon equation, Dirac relativistic equation & Mathematical	
		formulation, α and β matrices and related algebra, Properties of four	
		matrices, True continuity equation and interpretation.	
(ii)	Unit-II	Covariant form of Dirac equation, Dirac gamma (y) matrices,	
		Representation and properties, Trace identities, fifth gamma matrix,	
		Solution of Dirac equation for free particle (Plane wave solution), Dirac	
		spinor, Helicity operator, Explicit form, Negative energy state and	
		The Dirac particle in an external electromagnetic field. The non-	
		relativistic limit of the Dirac equation and the magnetic moment of the	
		electron.	
(iii)	Unit-III	Covariant form of Dirac equation. Lorentz covariance of the Dirac	
		equation. Boost as hyper rotation Boost, rotation, parity and time	
		reversal operation on the Dirac wave function. Boosting the wave	
		function from the rest frame. Plane wave solutions of the Dirac equation	
		and their properties. Energy and spin projection operators.	
		Introduction to quantum field theory, Lagrangian field theory, Euler-	
		Lagrange equations, Hamiltonian formalism, Quantized Lagrangian	
		field theory, Canonical commutation relations, The Klein-Gordon field,	
		Second quantization, Hamiltonian and Momentum, Normal ordering,	
		Fock space, The complex Klein-Gordon field: complex scalar field.	
(iv)	Unit-IV	Dirac's hole theory and charge conjugation. Feynman-Stuckelberg	
		interpretation of antiparticles.	
		Foldy-Wouthuysen transformations: Free particle transformation. The	
		general transformation.	
14)	Text Books and		
	References:		
(i)	Relativistic Quantum Mechanics – J.D. Bjorken and S.D. Drell, McGraw-Hill, New York		
	(1964).		
(ii)	Advanced Quantum Mechanics – J.J. Sakurai, Addison-Wesley Publishing Company, Inc		
	(1967).		
(iii)	Relativistic Quantu	m Mechanics and Quantum Fields - T-V Wu and W-V Pauchy Hwang	
(111)	Allied Publishers Limited (2001)		
(iv)	Palativistia Quantum Fielda L.D. Piorkan and S.D. Drall McCraw Hill Deals Company		
	(1965)	in rieus - J. D. Bjorken and S. D. Dien, Weoraw-rini Book Company	
(v)	A First Book of Ou	antum Field Theory – A. Lahiri and P. B. Pal, Narosa Publishing House	
	(2001).		

1)	Type of the Course	Disciplinary Core Course (Major Course -17)
2)	Name of the Course	Classical Electrodynamics
3)	Course Code	PHY01403
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course will help students to understand electromagnetic phenomena based on Maxwell's Equations. Also In this course, students will discuss the importance of electrodynamics not only for physicists. Students will see that electrodynamics provides a unique understanding of nature and is often the starting point for advanced studies.
8)	Programme/course Objectives	• Objective of this course is to learn atomic, molecular and spin resonance spectroscopy. This course is needed to have clear concept of Atomic, Molecular Physics and Modern Optics amongst students.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. At the end of this course the student will be able to: Understand electromagnetic wave propagation in conducting medium. Understand scalar and vector potentials along with Coulomb gauge and Lorentz gauge and retarded potentials. Learn the features of fields of a moving point charge and dipole radiations. Learn the fundamentals of Radiation reaction, Radiation damping, Cherenkov radiation, Brehmstrahlung radiation Learn about relativistic electrodynamics.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 7 th Semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science

12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Inhomogeneous wave equation: its solution. Lineard-Wiechert potentials. Field of a uniformly moving charge. Fields of an accelerated charge. Radiation from a charge at low velocity. Radiation from a charge at linear motion and circular motion or orbit. Bremsstrahlung-Cerenkov radiation. Relativistic electrodynamics. Covariant form of EM equations. Transformation law for the EM field. Lienard generalization of Larmor formula; a uniformly moving charge from Coulomb field.	
(ii)	Unit-II	Classica conserv Scatteri electror	al theory of electron: Radiation reaction from energy ation: Lorentz theory. Self force. ng: free and bound electron. Dispersion and absorption: Lorentz nagnetic theory. Kramers-Kronig relation.
(iii)	Unit-III	Magnet magnet Alfven Orbit tl pinched plasma	ohydrodynamics: Magnetohydrodynamic (MHD) equations, ic, viscosity, pressure, Reynold number, etc. MHD waves. waves and velocity, Hartmann flow and Hartmann number. neory of drift motions in a plasma. Pinch effect. Instability in l plasma columns. Plasma oscillations, short wavelength of oscillation and Debye screening length.
(iv)	Unit-IV	Propaga field on radiatio	ation of EM waves through plasma. Effect of external magnetic wave propagations: ordinary and extraordinary rays. Multipole n.
14)	Text Books and References:		
(i)	Jackson - Classical Electrodynamics		
(ii)	Marion - Classical Electrodynamics		vnamics
(iii)	Griffith – Electrodynamics		
(iv)	Panofsky & Phillips - Classical Electrodynamics		
(v)	Chen - Plasma Phys	Chen - Plasma Physics	

1)	Type of the Course	Disciplinary Core Course (Major-18)
2)	Name of the Course	Atomic and Molecular Physics –II
3)	Course Code	PHY01405

4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• Through fundamental studies of atoms, students will better understand the construction of the matter. The physical foundation underlying the formation of molecular bonds will also be studied.
8)	Programme/course Objectives	• Objective of this course is to learn atomic, molecular and spin resonance spectroscopy. This course is needed to have clear concept of Atomic, Molecular Physics and Modern Optics amongst students.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Upon successful completion of this course it is intended that a student will be able to: Describe the atomic spectra of one and two valance electron atoms. Explain the change in behavior of atoms in external applied electric and magnetic field. Learn about atomic spectra and discuss the relativistic corrections for the energy levels of the hydrogen atom Explain the observed dependence of atomic spectral lines on externally applied electric and magnetic fields i.e. Normal and Anomalous Zeeman Effect, Paschen Back and Stark Effect. State and explain the key properties of many electron atoms and the importance of the Pauli exclusion principle Discuss the importance of vector Model, L-S and J-J couplings State the rotational spectra of a diatomic molecule as a rigid rotator and as a non-rigid rotator, isotope effect, Raman Effect
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 5 th Semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science

12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Atomic	Physics:
		Brief review of Bohr and Sommerfeld model of atoms. Effect of finite nuclear mass in relation to Rydberg constant. Idea of discrete energy levels and electron spin: Fanck – Hertz and Stern – Gerlach experiments, Significance of four quantum numbers and concept of atomic orbitals.Dipole selection rules (examples with derivation), Width and shape of spectral lines, Spinorbit coupling, Lamb shift and Retherford experiment, Hyperfine structure of lines, Normal andspecific mass shifts.	
(ii)	Unit-II	One va	lence electron atom:
		Orbital momen configu General	magnetic dipole moment, Orbital, spin and total angular ta, Larmor precession, Vector model of atom, Electronic ration and atomic states, fine structure, Intensity of spectral lines, selection rules, Normal Zeeman Effect.
		Two va	lence electron atoms:
		LS and inverted and Stat	JJ coupling schemes and resulting spectra, Idea of normal and I doublet, Anomalous Zeeman Effect, Basics of Paschen Back rk Effect.
(iii)	Unit-III	Molecu	lar Physics:
		Vibration pure rote non-rigit Lines, Frank C	onal structure and vibrational analysis, Theory of the origin of cational spectra of a diatomic molecule as a rigid rotator and as a id rotator, isotope effect, Raman Effect, Characteristics of Raman Classical and Quantum theory of Raman Effect, Condon Principle, Dissociation Energy
(iv)	Unit-IV	Lasers:	
		Einsteir conditio Charact resonato Q-switc	a coefficients, Requisites for producing laser light, Threshold on for LASER action, Rate equation for three level laser system, eristics of laser radiation. Role of Plane and Confocal cavity ors, Longitudinal and transverse cavity modes, Mode selection, ching and Mode locking, He-Ne and Nd-YAG Laser.
14)	Text Books and References:		
(i)	Atomic & Molecular Spectra : Laser :- Raj Kumar		a : Laser :- Raj Kumar
(ii)	Introduction to Atomic Spectra:- H.E. White.		

(iii)	Physics of Atoms and Molecules:- Bransden and Joachain.
(iv)	Fundamentals of Molecular Spectroscopy :- C. N. Banwell
(v)	Lasers - Theory and Applications:- K. Thyagrajan and A.K. Ghatak.

Electronics (Lab)

(Credits 2)

- 1. Energy band gap of semiconductor by reverse saturation current method
- 2. Energy band gap of semiconductor by four probe method
- 3. Hybrid parameters of transistor
- 4. Characteristics of FET, MOSFET, SCR, UJT
- 5. FET Conventional Amplifier
- 6. FET as VVR and VCA
- 7. Study and Verification of AND gate using TTLIC7408
- 8. Study and Verification of OR gate using TTLIC7432
- 9. Study and Verification of NAND gate and use as Universal gate using TTLIC7400
- 10. Study and Verification of NOR gate and use as Universal gate using TTLIC7402
- 11. Study and Verification of NOT gate using TTLIC7404
- 12. Study and Verification of Ex-OR gate using TTLIC7486

Text books & References:

- 1. R.L.Boylestad, L.Nashelsky, "ElectronicDevicesandCircuitTheory", Prentice-Hall of India Pvt.Ltd., 2015, 11e
- 2. J.Millman, C.C.Halkias, SatyabrataJit, "Electronic Devices and Circuits", McGrawHill, 2015, 4e
- 3. B.G.Streetman, S.K.Banerjee, "SolidStateElectronicDevices", PearsonEducationIndia, 2015, 7e
- 4. J.D.Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. S.L.Gupta, V.Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e
- D. Leach, A.Malvino, Goutam Saha, "Digital Principles and Applications", McGrawHill, 2010, 7e
- 7. William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e
- 8. R.P.Jain, "Modern Digital Electronics", McGrawHill, 2009, 4e

SEMESTER-VIII

1)	Type of the Course	Disciplinary Core Course (Major Course -19)
2)	Name of the Course	FIBRE AND INTEGRATED OPTICS
3)	Course Code	PHY01402
4)	Total Credit	L-T-P=4-0-0=4
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course, which concentrates on classical physics and special relativity, is normally taken by physics majors in their under-graduation. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of Newtonian mechanics and special relativity.
8)	Programme/course Objectives	• This course on classical dynamics aims to train the student in problem solving ability and develops understanding of physical problems. The emphasis of this course is to enhance the understanding of Classical Mechanics (Lagrangian and Hamiltonian Approach).
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Upon completion of this course, students are expected to- Understand the physical principle behind the derivation of Lagrange and Hamilton equations, and the advantages of these formulations. Understand the intricacies of motion of particle in central force field. Critical thinking and problemsolving skills. Solve the problems of relativity.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 8 th semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science

12)	Course duration	One Semester
13)	Course Structure	
(i)	Unit-I	Optical Fibers: Structure of optical fibers, Step and graded index fibers, Single, multimode and W-profile fibers. Meridional and skew rays, Numerical aperture and acceptance angle. Multipath, Material dispersion, their combined effect, RMS pulse widths and frequency response Birefringence, Attenuation in optical fibers – Absorption, Scattering, Radiative losses. Photonic crystal fibers.
(ii)	Unit-II	 Wave Propagation in Step-index Fibers: Modes in a step-index fiber, weakly guiding solutions, Time dispersion, Material Dispersion and Waveguide dispersion in single-mode fibers. Wave Propagation in Graded-index Fibers: Modes in graded index fibers, Approximate solution (WKB Approximation), No. of propagating modes, The equivalence of WKB Approximation and the ray model, Inter model and Intra model dispersion in graded-index Fibers, Mode coupling.
(iii)	Unit-III	 Optical Sources: Light -Emitting Diodes and laser diodes Fiber lasers, Power launching and coupling techniques, Source of Power coupling, Fiber to Fiber joints and splitting techniques. Photo Detector and Sensors: Photo Detectors, PIN Photodiodes and Avalanche photodiode. Noise performance, Fiber Optics sensor and photonic circuits, Optical fiber fabrication and cabling, fiber assessment (measuring techniques for fiber characteristics), Measurement of attenuation, index profile, numerical aperature. Time domain and frequency domain dispersion measurement, Application of fiber optics.
14)	Text Books and References:	
(i)	Optical Communica	ation Systems by John Gowar.
(ii)	Optical Fiber Comr	nunication Systems by Gerd Keiser.
(iii)	Introduction to Opt	ical fibers: A.K. Ghatak and K. Thayagarajan

1)	Type of the Course	Disciplinary Core Course (Major Course -20)
2)	Name of the Course	Nuclear and Particle Physics

3)	Course Code		PHY01404
4)	Total Credit		L-T-P=4-0-0=4
5)	Floated by/Proposed by		Department of Physics
6)	Who can teach this course	S	Faculties from Physics
7)	Overview		• Through fundamental studies of atoms, students will better understand the construction of the matter. The physical foundation underlying the formation of molecular bonds will also be studied.
8)	Programme/course Objectives		• Objective of this course is to learn atomic, molecular and spin resonance spectroscopy. This course is needed to have clear concept of Atomic, Molecular Physics and Modern Optics amongst students.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving .At the end of this course the student will be able to: Understand theories of alpha, beta and gamma rays. Understand the electric and magnetic dipole moments, and Electromagnetic properties of nuclei. Learn the features of nuclear shell models. Learn the fundamentals of SU(2), SU(3) and classifications of hadrons.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 8 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Proper Mass, o angular defect packing B/A ag	ties of Nucleus Charge, Nuclear size and shapes, nuclear spin, parity, nuclear momentum, nuclear magnetic moment, Packing fraction, mass and binding energy, binding energy of deuteron, variation of g fraction with mass number, binding energies of nuclei (plot of ainst A), nature of nuclear forces.

(ii)	Unit-II	Types of Radiation Decays	
		α -decay, Range of α -particle, Geiger-Nuttal law and α -particle-spectra,	
		Gamow theory of α -decay, β -decay, β -energy spectra and neutrino	
		conversion	
(iii)	Unit-III	Nuclear Reactions:	
		Types of nuclear reactions and conservation laws, concept of compound and direct reactions, compound nucleus, Q-value of the nuclear reaction, nuclear cross-section, nuclear energy, nuclear fission, nuclear reactors, types of nuclear reactors, Breeder reactors, nuclear fusion, nuclear fusion in stars, nuclear fusion reactors	
(iv)	Unit-IV	Particle Physics	
		Yukawa's Meson theory of nuclear forces and discovery of pion, Liquid drop model, Weizsacher's semi-empirical mass-formula, Shell Model and magic numbers, Predictions of the Shell Model Relativistic kinematics, Types of interactions, Classification of elementary particles, spin and parity determination of pions and strange	
		applications of symmetry arguments to particle reactions, properties of quarks and their classification, Particle symmetries, elementary ideas of SU(2) and SU(3) symmetry, Hadron particles and classification of	
		hadrons particles, Introduction to the standard model.	
14)	Text Books and References:		
(i)	Introduction to Nuc	clear Physics by Enge, H.A. (Addison Wesley)	
(ii)	Nuclear Physics- Theory and experiments by R.R Roy and B. P. Nigam, (New Age International 2005)		
(iii)	Nuclear Physics-An Introduction by S. B. Patel (New Age International 1998)		
(iv)	Introduction to Nuclear and Particle Physics by V.K. Mittal & R. C. Shrama (PHI Learning, 2011)		
(v)	Introduction to Elem	entary Particle by D. Griffiths (Academic Press, 2 nd Ed. 2008)	
(vi)	Atomic and Nuclear Physics by S. N. Ghoshal (S. Chand & Company Ltd.)		

<u>Special Paper-I</u> Special Paper-II

Pool for 9 th Sem Special papers-I,II					
SI No.	Field of Specialization	Course Title			
1.	Applied Optics	a) Nanophotonics			
		b) Optoelectronics and Optical			
		Computing			
		c) Fourier Optics and Holography			
2.	Atomic and Molecular Physics	a) Spectroscopy and Lasers			
		b) Principles and Instrumentation in			
		conventional and Laser			
		Spectroscopy			
		c) Group Theory, Molecular			
		Spectra and Modern Optics			
3.	Nuclear Physics	d) Nuclear Physics: Interactions and			
		Models			
		e) Applied Radiation Physics			
		f) Accelerator Physics			
4.	Condensed Matter Physics	a) Condensed Matter Physics-I			
		b) Condensed Matter Physics-II			
		c) Condensed Matter Physics-III			
5.	High Energy	a) High Energy Physics I			
	Physics				
		b) High Energy Physics II			
		c) Quark Gluon Plasma			
		&Quarkonium			

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Nanophotonics
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this	Faculties from Physics
	course	
7)	Overview	• Photonics is a branch of science that emphasizes on the

			application of the EM waves. This course will help students to understand the nano scale optical phenomenon.
8)	Programme/course Objectives		• This course aim to develop an understanding of the advance quantum mechanics. The aim of the course is that the students acquire in-depth knowledge about the foundations of quantum mechanics, as well as skills in applying quantum mechanics in advanced problems.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. The Students will be able to learn the following from this course: Basics of photons and electrons and their features. Basic ideas about the quantum confinement and structures. Introduction to photonic crystals, plasmonics and its applications. Learn the basics of micro-cavities and its applications.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Introduction to photons and electrons, their propagation, confinement, tunneling, Localization under a periodic potential: Band gap. Cooperative effect, Nanoscale optical interactions, Nanoscale confinement of electronic interactions, nanoscale electronic energy transfer, Cooperative emissions. Inorganic semiconductors, quantum wells, wired, dots and rings, Manifestation of quantum confinement, Quantum confined stark effect, Dielectric confinement effect, super-lattices, Core-shell quantum dots and quantum dot quantum wells, Quantum confined structures as Lasing media, Organic Quantum confined structures.	
(ii)	Unit-II	Basics Fabrica Crystal emitters Photoni	Concept of Photonic Crystals, Theoretical Modeling, Methods of tion, Optical Circuitry, Nonlinear Photonic Crystals, Photonic s and Optical Communications, Application to high efficiency s, miniaturized photonic circuits and dispersion engineering, ic Crystal Sensors.

(iii)	Unit-III	Photonic crystal fiber, photonic band gap fibers (PBG), band gap guiding, single mode and multi-mode, dispersion engineering.			
		nonlinearity engineering, devices using crystal fibers.			
		Metallic nanoparticles, nanorods and nanoshells, local field			
		enhancement, Collective modes in nanoparticle arrays, particle chains			
		and arrays, surface plasmons, Plasmon waveguides, Applications of			
		Metallic Nanostructures.			
(iv)	Unit-IV	Resonant cavity quantum well lasers and light emitting diodes,			
		Fundamentals of Cavity QED, strong and weak coupling regime, Purcell			
		factor, Spontaneous emission control, Application of microcavities			
		including low threshold lasers, resonant cavity LED, Microcavity based			
14)	Tout Doolig and	single photon sources.			
14)	Text Books and				
	References:				
(i)	Nanophotonics by Paras N Prasad.				
(ii)	Photonic Crystals: Towards Nanoscale Photonic Devices by Jean Michel Lourtioz.				
(iii)	Fundamentals of Photonic Crystal Fibers by Fredric Zolla.				
(iv)	Photonic Crystals: Modelling Flow of Light by John D Joannopoulos, R.D. Meade and J.N. Winn				
(v)	The Handbook of Photonics by Mool Chand Gupta, John Ballato.				

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Optoelectronics and Optical Computing
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• Optoelectronics and Optical Computing is based on the devices and the phenomenon at which they work. This course is important to understand the link between electronics and photonics.
8)	Programme/course Objectives	• This course aim to introduce the students with the various concepts of optoelectronic devices and

			optical computing like LEDs, Photodiode,	
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving . The students will be able to learn the following from this course: Basics of LED principles & characteristics. Basic ideas about the characteristics &responsivity of photo diodes. Introduction to Holographic interferometry & Speckle phenomenon. Learn the basics of Modified signed digit number system, residue number system. 	
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.	
11)	Course eligibili requisite	ty/Pre-	10+2 with science	
12)	Course duration		One Semester	
13)	Course Structure			
(i)	Unit-ILED principles & characteristics, Quantum efficiency, Homostructure & Heterostructure LEDs, Rise time, Fall time & Bandwidth, Laser diod characteristics, Quantum well laser diode, Fabry-Perot Laser diode Heterostructure laser diodes, slope efficiency, power efficiency an quantum efficiency, recombination lifetimes.			
(ii)	Unit-II	Different types of noise in photo diodes, characteristics & responsivity of photo diodes, p-i-n photodiode, avalanche photodiode, coherent detection and photo transistors		
(iii)	Unit-III	Transfer function, Phase & Fourier transform of thin lens, Imaging with thin lens, longitudinal magnification, principles of holography, Image reconstruction, On-axis & Off-axis holography, Holographic interferometry & Speckle phenomenon.		
(iv)	Unit-IV	Optical addition/subtraction, multiplication/division, averaging, differentiation, integration, Modified signed digit number system, residue number system, Realization in MSD & Residue codes, Threshold logic, Spatial light modulator, Shadow casting system.		
14)	Text Books and References:			
(i)	Optical Systems and	Optical Systems and Processes, Joseph Shamir.		
(ii)	Fundamentals of optoelectronics, C Pollock			

(iii)	Optical Computing: An Introduction, Mohd. A Karim&Abdula A S Awaal
(iv)	Laser and holographic Data processing by N.G. Bosov.

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Fourier Optics and Holography
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course is an introduction to Fourier analysis of optical systems, with applications to optical information processing. This course also provides an introduction to optical propagation and diffraction using a scalar wave approach and Fourier theory of imaging. Topics introduced will include pupil function, point spread function and line spread function, optical transfer function, image formation with coherent and incoherent light, holography and diffractive optical elements.
8)	Programme/course Objectives	• Objective of this course is to learn basic principles of electro-optic devices. This course is gives the idea of advance applications in optics and holography.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Upon successful completion of this course it is intended that a student will be able to: Describe the Nonlinear optical media, second-order nonlinear optics. Explain the Requirements for holography, Recording geometrices and special configurations. Learn about Fourier analysis in two dimensions and Fourier transform theorems.

10)	Who can attend /course		This course is suitable for students from Physics. CUJ Students of 6 th	
	audience		Semester can attend the course.	
11)	Course eligibility/Pre-		10+2 with science	
12)	Course duration		One Semester	
13)	Course Structure			
(i)	Unit-I Nonline nonline Princip optics Interact optics o		ar optical media, second-order nonlinear optics, third-order ar optics, three-wave mixing, four-wave mixing, optical solitons, es of electro-optics, electro-optics of anisotropic media, electro- of liquid crystals, photorefraction, electro-optic devices, ion of light and sound in matter, acousto-optic devices, acousto- f anisotropic media.	
(ii)	Unit-II	Fourier Diffract lens in	analysis in two dimensions. Fourier transform theorems. tion of light. Fourier transformation by propagation. Role of a Fourier transformation and imaging.	
(iii)	Unit-III	Fourier transform processors. Filter type and their realization, Stigmatic Fourier transform processor, Synthetic aperture radar data processor, Image deblurring, spatial filtering, pattern recognition, hybrid processors, Van CittertZernicke theorem. Michelson stellar interferometer. Fourier transform spectroscopy. Frequency response of a lens (imaging system).Optical transfer function.		
(iv)	Unit-IV	Introdu geomet volume hologra	ction to holography, Requirements for holography, Recording rices and special configurations, Mathematical analysis of holograms.Hologram types.Recording media, applications of phy with emphasis to interferometry.	
14)	Text Books and References:			
(i)	J. W. Goodman, Int	roductio	n to Fourier Optics, McGraw-Hill (1968)	
(ii)	J.D. Gaskill, Linear	Systems	s, Fourier Transforms and Optics, John Wiley (1978).	
(iii)	R.S. Sirohi, Wave Optics and Applications, Orient Longman (1993)			
(iv)	W. T. Cathy, Optical information processing and holography, John Wiley (1974).			
(v)	D. Cassasent (Ed.)	Optical d	ata processing -Applications, Springer - Verlag (1978).	
(vi)	S.H. Lee (Ed.) Optical data processing -Fundamentals. Springer - Verlag (1981).			
(vii)	L.H. Lin, Optical Holograp Press (1984) R.S. Sirohi and techniques, marcel! Oekker		phy, Po Hariharan, Optical Holography, Cambridge University d M.P. Kothial, Optical components, systems and measurement (1991).	
1)	Type of the Course	e	Disciplinary Core Course (Major-12)	

2)	Name of the Course		Spectroscopy and Lasers
3)	Course Code		
4)	Total Credit		L-T-P=3-0-0=3 (three)
5)	Floated by/Propose	d by	Department of Physics
6)	Who can teach this course		Faculties from Physics
7)	Overview		• Lasers have their numerous applications and spectroscopy is an important tool in physics to understand structure of atom. The course intends to provide theoretical and practical knowledge of the many powerful methods, as modern atom and molecular spectroscopy offer respect both basic studies and practical applications.
8)	Programme/course Objectives		• The course aims to provide students the understanding of electronic spectra, atoms and molecules and Lasers.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Students will have achieved the ability to: Describe the atomic spectra of one and two valance electroms. Explain the change in behavior of atoms in external appelectric and magnetic field. Explain rotational, vibrational, electronic and Raman sp of molecules. Describe electron spin and nuclear magnetic resonance spectroscopy and their applications
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre-		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Spectro Designa states, vibratio	Scopy of Atoms and Molecules: ation of Atomic and Molecular States, Classification of electronic Electronic, vibrational and Rotational spectra, interaction of n and electronic motion, Renner- Teller effect, coupling of

	rotation with vibration and electronic motion for linear molecules, concept of allowed and forbidden transitions, selection rules, elements of Microwave Spectroscopy, Principle of ESR and NMR with experimental setup, Chemical shift.			
(ii)	Unit-II	Electronic Spectra: Electronic energy and total energy, vibration structure of electronic transitions, progressions and sequences, rotational structure of electronics bands, band head formation and band origin, intensity distribution in vibrational structure, Deslandre table, Frank-Condon principle and its quantum mechanical formulation, Intensity alteration and missing lines in rotational lines. Dissociation energy and its determination.		
(iii)	Unit-III	Laser Physics: Basic elements of a laser, Rate equations for three and four level systems and operation of a laser, critical pumping rate, Resonant modes of optical cavities, Mode size and cavity stability, Q-factor and resonance line width, Q-switching, techniques of Q-switching, Pockel's effect and mode locking.		
(iv)	Unit-IV	V Laser Systems: Pulsed crystal lasers, rare earth ion lasers, principle and working of Threshold condition for oscillation in Semiconductor Laser, Semiconductor Laser, Principle and Working of CO2 laser, Nd-YAG laser Excimer Laser tunable Dye Lasers		
14)	Text Books and References:			
(i)	LASERS Theory and	nd Applications: K. Thyagarajan and A.K. Ghatak		
(ii)	Laser spectroscopy and Instrumentation: W. Demtroder			
(iii)	Molecular Spectra and Molecular Structure: G. Herzberg			
(iv)	High resolution Spectroscopy: J.M. Hollas			
(v)	Atomic Spectra Str	ucture and Modern Spectroscopy: DK Rai and SN Thakur		
(vi)	Fundamentals of M	olecular Spectroscopy: C. N. Banwell		

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Fourier Optics and Holography
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)

5)	Floated by/Proposed by		Department of Physics
6)	Who can teach this course		Faculties from Physics
7)	Overview		• This course is an introduction to Fourier analysis of optical systems, with applications to optical information processing. This course also provides an introduction to optical propagation and diffraction using a scalar wave approach and Fourier theory of imaging. Topics introduced will include pupil function, point spread function and line spread function, optical transfer function, image formation with coherent and incoherent light, holography and diffractive optical elements.
8)	Programme/course Objectives		• Objective of this course is to learn basic principles of electro-optic devices. This course is gives the idea of advance applications in optics and holography.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Upon successful completion of this course it is intended that a student will be able to: Describe the Nonlinear optical media, second-order nonlinear optics. Explain the Requirements for holography, Recording geometrices and special configurations. Learn about Fourier analysis in two dimensions and Fourier transform theorems.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Nonline nonline Principl optics Interact	ear optical media, second-order nonlinear optics, third-order ar optics, three-wave mixing, four-wave mixing, optical solitons, les of electro-optics, electro-optics of anisotropic media, electro- of liquid crystals, photorefraction, electro-optic devices, ion of light and sound in matter, acousto-optic devices, acousto-

		optics of anisotropic media.	
(ii)	Unit-II	Fourier analysis in two dimensions. Fourier transform theorems. Diffraction of light. Fourier transformation by propagation. Role of a lens in Fourier transformation and imaging.	
(iii)	Unit-III	Fourier transform processors. Filter type and their realization, Stigmatic Fourier transform processor, Synthetic aperture radar data processor, Image deblurring, spatial filtering, pattern recognition, hybrid processors, Van CittertZernicke theorem. Michelson stellar interferometer. Fourier transform spectroscopy. Frequency response of a lens (imaging system).Optical transfer function.	
(iv)	Unit-IV	Introduction to holography, Requirements for holography, Recording geometrices and special configurations, Mathematical analysis of volume holograms.Hologram types.Recording media, applications of holography with emphasis to interferometry.	
14)	Text Books and References:		
(i)	J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill (1968)		
(ii)	J.D. Gaskill, Linear Systems, Fourier Transforms and Optics, John Wiley (1978).		
(iii)	R.S. Sirohi, Wave Optics and Applications, Orient Longman (1993)		
(iv)	W. T. Cathy, Optical information processing and holography, John Wiley (1974).		
(v)	D. Cassasent (Ed.) Optical data processing -Applications, Springer - Verlag (1978).		
(vi)	S.H. Lee (Ed.) Optical data processing -Fundamentals. Springer - Verlag (1981).		
(vii)	L.H. Lin, Optical Holography, Po Hariharan, Optical Holography, Cambridge University Press (1984) R.S. Sirohi and M.P. Kothial, Optical components, systems and measurement techniques, marcel! Oekker (1991).		

1)	Type of the Course		Disciplinary Core Course (Major-12)
2)	Name of the Course		Principles and Instrumentation in conventional and Laser Spectroscopy
3)	Course Code		
4)	Total Credit		L-T-P=3-0-0=3 (three)
5)	Floated by/Propose	d by	Department of Physics
6)	Who can teach this course		Faculties from Physics
7)	Overview		• Lasers have their numerous applications and instrumentation is an important tool in physics to understand physical phenomenon. The course intends to provide theoretical and practical knowledge of the many powerful methods, related to both basic studies and practical applications.
8)	Programme/course Objectives		 The course aims to provide students the understanding of electronic spectra, atoms and molecules and Lasers.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Students will have achieved the ability to: Describe the atomic spectra of one and two valance electricatoms. Explain the change in behavior of atoms in external appelectric and magnetic field. Explain rotational, vibrational, electronic and Raman spof molecules. Describe electron spin and nuclear magnetic resonance spectroscopy and their applications
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Light so Synchro	ources, Detectors and Spectroscopic Techniques: otron Radiation source, Thermal detector, Photodiode, Charged

		Coupled detector, Magnetic bottle spectrometer, UV/Vis absorption spectroscopy & luminescence spectroscopy, Basic idea of Circular dichroism, Principle of Fourier transform (FT) spectroscopy, Fast Fourier transform (FFT), FT-IR and FT-Raman spectrometers, Advantages of FT techniques over conventional methods, application of IR and Raman spectroscopy, surface enhanced Raman spectroscopy (SERS) and its applications.	
(ii)	Unit-II	Photoacoustic Spectroscopy, Time-resolved spectroscopy, Cluster formation and its application to the formation of prebiotic molecules, AES (Auger electron spectroscopy), Techniques of Coincidence detection.	
(iii)	Unit-III	Vacuum Techniques and pumps	
		Vacuum, Production of low and high vacuum, Basic idea of conductance, pumping speed, Rotary oil pump, Diffusion pump, Turbo Molecular Pump, Penning and Pirani gauges.	
(iv)	Unit-IV	Non-Conventional Spectroscopic Techniques: Two-photon spectroscopy, Saturation Spectroscopy, Resonance Raman spectroscopy and CARS, Optogalvanic Spectroscopy, Experimental techniques of MPI spectroscopy, Supersonic beam spectroscopy with emphasis on measurement of molecular parameters.	
14)	Text Books and References:		
(i)	Laser Spectroscopy: W. Demtroder.		
(ii)	High Resolution Spectroscopy: J. M. Hollas		
(iii)	Spectrophysics: A. Thorpe		
(iv)	Low Energy electron spectroscopy: KD Sevier		
(v)	Radiation Detectors: WH Tait		

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Fourier Optics and Holography
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this	Faculties from Physics

	course		
7)	Overview		• This course is an introduction to Fourier analysis of optical systems, with applications to optical information processing. This course also provides an introduction to optical propagation and diffraction using a scalar wave approach and Fourier theory of imaging. Topics introduced will include pupil function, point spread function and line spread function, optical transfer function, image formation with coherent and incoherent light, holography and diffractive optical elements.
8)	Programme/course Objectives		• Objective of this course is to learn basic principles of electro-optic devices. This course is gives the idea of advance applications in optics and holography.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Upon successful completion of this course it is intended that a student will be able to: Describe the Nonlinear optical media, second-order nonlinear optics. Explain the Requirements for holography, Recording geometrices and special configurations. Learn about Fourier analysis in two dimensions and Fourier transform theorems.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibil requisite	ity/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Nonline nonline Princip optics Interact optics o	ear optical media, second-order nonlinear optics, third-order ar optics, three-wave mixing, four-wave mixing, optical solitons, les of electro-optics, electro-optics of anisotropic media, electro- of liquid crystals, photorefraction, electro-optic devices, ion of light and sound in matter, acousto-optic devices, acousto- of anisotropic media.
(ii)	Unit-II	Fourier Diffraction	analysis in two dimensions. Fourier transform theorems. tion of light. Fourier transformation by propagation. Role of a Fourier transformation and imaging.

(iii)	Unit-III	Fourier transform processors. Filter type and their realization, Stigmatic Fourier transform processor, Synthetic aperture radar data processor, Image deblurring, spatial filtering, pattern recognition, hybrid processors, Van CittertZernicke theorem. Michelson stellar interferometer. Fourier transform spectroscopy. Frequency response of a lang (imaging system) Optical transfor function	
(iv)	Unit-IV	Introduction to holography, Requirements for holography, Recording geometrices and special configurations, Mathematical analysis of volume holograms.Hologram types.Recording media, applications of holography with emphasis to interferometry.	
14)	Text Books and References:		
(i)	J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill (1968)		
(ii)	J.D. Gaskill, Linear Systems, Fourier Transforms and Optics, John Wiley (1978).		
(iii)	R.S. Sirohi, Wave Optics and Applications, Orient Longman (1993)		
(iv)	W. T. Cathy, Optical information processing and holography, John Wiley (1974).		
(v)	D. Cassasent (Ed.) Optical data processing -Applications, Springer - Verlag (1978).		
(vi)	S.H. Lee (Ed.) Optical data processing -Fundamentals. Springer - Verlag (1981).		
(vii)	L.H. Lin, Optical Holography, Po Hariharan, Optical Holography, Cambridge University Press (1984) R.S. Sirohi and M.P. Kothial, Optical components, systems and measurement techniques, marcel! Oekker (1991).		

1)	Type of the Course		Disciplinary Core Course (Major-12)
2)	Name of the Cours	e	Group Theory, Molecular Spectra and Modern Optics
3)	Course Code		
4)	Total Credit		L-T-P=3-0-0=3 (three)
5)	Floated by/Propose	ed by	Department of Physics
6)	Who can teach this course		Faculties from Physics
7)	Overview		• Spectroscopy is an important tool in physics to understand structure of atom. The course intends to provide theoretical and practical knowledge of the group theory, atom and molecular spectroscopy along with optics for both basic studies and practical applications.
8)	Programme/course Objectives		 The course aims to provide students the understanding of electronic spectra, atoms and molecules and Lasers.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Students will have achieved the ability to: Describe the atomic spectra of one and two valance electroms. Explain the change in behavior of atoms in external appelectric and magnetic field. Explain rotational, vibrational, electronic and Raman sp of molecules. Describe electron spin and nuclear magnetic resonance spectroscopy and their applications
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Symme Symme	etry and Group Theoretical Treatment: try elements and symmetry operations, point group and their

		representation, mathematical group, Matrix Representations,		
		Orthogonality theorem (Statement and interpretation only), Reducible and irreducible representations		
(ii)	Unit-II	Direct product group, Normal modes, symmetry characterization of		
		electronic states and vibrational modes of polyatomic molecules,		
		Character Tables for C2v and C3v point groups and their applications to		
		selection rules of IR and Raman Spectra, Application to CO2 and H2O		
(;;;)	Unit III	Molecules. Vibration Potation Energy Levels and Spectras		
(III)	Unit-111	Rotational Energy of Spherical Prolate and Oblate Symmetric Rotors		
		Rotational Raman and IR Spectra of linear molecules and Determination		
		of their geometry, Rotation-Vibration band of a diatomic molecules,		
		Parallel and perpendicular type bands in Linear and symmetric rotor		
		molecules.		
(iv)	Unit-IV	Nonlinear optics:		
		Significance of non-linear polarization of lasers and some applications:		
		Second harmonic generation using non-linear optical methods,		
		Elementary idea of laser-based non-linear optical techniques. (Nonlinear		
		susceptibilities, symmetries, phase matching).		
14)	Text Books and	and		
	References:			
(i)	Molecular orbital Theory: A. Streitweiser.			
(ii)				
(:::)	Chemical Application of group theory: F.A. Cotton			
(111)	Elements of Group Theory for physicists: A. W. Joshi.			
(iv)	Fundamentals of Molecular Spectroscopy: C. N. Banwell			
(v)	Modern Spectroscopy: J.M. Hollas			
(vi)	Physics of Nonlinear Optics: Guang S. He and Song H. Liu			

1)	Type of the Course	Disciplinary Core Course (Major-12)	
2)	Name of the Course	Nuclear Physics: Interactions and Models	
3)	Course Code		
4)	Total Credit	L-T-P=3-0-0=3 (three)	
5)	Floated by/Proposed by		Department of Physics
------	--	---	--
6)	Who can teach this course		Faculties from Physics
7)	Overview		• Nuclear physics is the branch of physics that studies atomic nuclei and their constituents and interactions. The course introduces the fundamental principles that underline nuclear science and its engineering applications, as well as mathematical tools needed to grasp these concepts.
8)	Programme/course Objectives		• In this course students will be exposed to the basic principles and functionalities of nuclear interactions and models. This subject aims to train student for the applications of the concepts of nuclear models.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. The Students will be able to learn the following from this course: To develop a applications based understanding of shell model, deformed liquid drop model. Learn about qualitative ideas on deep inelastic electron-proton scattering. To learn about the physical description of heavy ion collisions, collisions near coulomb barrier
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibili requisite	ty/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Liquid formula perman electron Shell n Predict: Collect	drop model and nuclear fission, Weizsacker semi-empirical mass a and its applications, collective vibrations and excited states, ent deformation and collective rotations, energy levels and nagnetic properties of even even and odd Deformed nuclei, nodel, Magic numbers, Evidence of nuclear shell structure, ions of shell model, Limitation of Shell model, Fermi gas model, ive model.
(ii)	Unit-II	A brief kinema and pr	review of different types of nuclear reactions, Nuclear reaction tics, Ground state of Deuteron, S and D state, neutron-proton oton-proton scattering, central and non-central forces, Spin

		dependence of nuclear forces, exchange forces.	
(iii)	Unit-III	Compound nucleus theory and its limitations, Continuum theory of	
		nuclear reaction, Resonance scattering, Briet Wigner description	
		formula, Statistical theory of nuclear reactions.	
(iv)	Unit-IV	Physical description of heavy ion collisions, Collisions near Coulomb	
		barrier, elementary idea of classical and approximate quantum	
		mechanical theories, exotic and super heavy nuclei, complete and	
		incomplete fusion, idea of sub barrier fusion, Quasi-fission, high-spin	
		states.	
14)	Text Books and		
	References:		
(i)	Introduction to Nuclear Physics by Enge, H.A.		
(ii)	Introductory Nuclear Physics by Samuel S. M. Wong		
(***)	Neelee Dheeree he D.C. Terrel		
(111)	Nuclear Thysics by D.C. Tayar		
(iv)	Nuclear Devices by Dreston M A and Deduci D		
(1)			
(v)	Nuclear Physics- Theory and experiments by R.R Roy and B. P. Nigam		
(vi)	Nuclear Physics-An Introduction by S. B. Patel.		
(vii)	Concept of Nuclear Physics by B.L. Cohen.		
(viii)	Nuclear and Particle Physics: An Introduction by B. Martin		
(ix)	Atomic and Nuclear Physics by S. N. Ghoshal.		
(x)	Introduction to Nuclear and Particle Physics by V.K. Mittal & R. C. Shrama		

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Applied Radiation Physics
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• Radiations are everywhere. This course provides

			information of radiological concepts and techniques with an overview of radioactivity, sources of radiation, and radioactive decay.
8)	Programme/course Objectives		• The aim of this course is to acquire in-depth knowledge about interaction of radiation with matter. This subject helps to build understanding of the various detectors and counters along with the application based features of radiations.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. On successful completion of the module students should be able to- Learn about interaction of charged particle and electromagnetic radiation with matter. Gain knowledge about natural and artificial radioactivity and its applications. Understand about Gas filled detectors, ionization counter, Geiger-Muller counter etc Gain knowledge about Heavy charged particle sources, Neutron sources, Reactor produced isotopes etc.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Interact matter, beam e transfer various	ion of charged particle and electromagnetic radiation with Photoelectric effect, Compton effect, Pair production, Photon xponential attenuation, Rayleigh scattering, Attenuation, energy and mass energy absorption coefficients, Relative importance of types of interactions.
(ii)	Unit-II	Natural and artificial radioactivity and its applications, different type of decay, Laws of radioactive disintegration, Radioactive decay constant, Half-life period, Statistical nature of radioactivity, radioactive growth and decay, Gamma emission, Nuclear isomerism, Elementary ideas of nuclear fission and fusion, Idea about nuclear and fast breeder reactors, Effect of radiation, methods of radiation protection, radiation safety, exposures to radiation, medical uses of radiation.	
(iii)	Unit-III	Gas filled detectors, ionization counter, Geiger-Muller counter, scintillation counter, solid state or semiconductor detectors, Ge(Li), Si(Li), HPGe detectors, Cloud and Bubble chambers, Spark chambers, Neutron Detectors, Solid State Nuclear track (SSNTD) detectors,	

		Thermolumenescent Dosimeters (TLD), Optically stimulated		
		Luminescence dosimeters (OSLD), Radiophoto luminescent dosimeters		
(iv)	Unit-IV	Unites and definitions, Natural and artificial radioactive sources, fast		
		electron sources, sources of electromagnetic radiation, Heavy charged		
		particle sources, Neutron sources, Reactor produced isotopes, Particle		
		Accelerators produced isotopes, Fission products, industrial uses.		
14)	Text Books and			
	References:			
(i)	Radiation Detectors by C. F. G. Delaney and E. C. Finach, Clarendon Press Oxford 1992.			
(ii)	Radiation Detection and Measurement by Glenn F. Knoll, 3 rd edition, John Wiley India 2012.			
(iii)	Nuclear Physics-An Introduction by S. B. Patel, New Age International, (P) Limited, Publishers, New Delhi, First edition, 1991.			
(iv)	A Primer in Applied Radiation Physics by F.A. Smith.			
(v)	Nuclear Radiation Detectors by S. S. Kapoor and V. S. Ramamurthy, New Age International, (P) Publishers, New Delhi, First edition, 1986.			
(vi)	Atom, Radiation and Radiation Protection by J. Turner.			
(vii)	Radiation Biophysics by E.L. Alpen.			

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Accelerator Physics
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• Accelerators are used to accelerate particles for various purposes. Ion beam facilities in these days are based on accelerator chains consisting of linacs, cyclotrons, and synchrotrons. This course provides information of types of accelerators and their working.
8)	Programme/course Objectives	• The aim of this course is to build an understanding of the various types, principles working and application of accelerators used in the past and present.
9)	Course features and	Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for

	Learning Outcomes		 query solving. Online faculty for query solving. On successful completion of the module students should be able to- Learn about basic principle of various particle accelerators, properties of beam. Gain knowledge about AC and DC accelerators. Understand about Elements of beam Transport, Electrostatic and magnetic lenses in Transverse beam dynamics. Learn about Longitudinal phase space dynamics, Momentum compaction in Longitudinal Beam Dynamics.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibili requisite	ity/Pre-	10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I Brief hi Propertie negative industry.		history and basic principle of various particle accelerators, ies of beam, Principle of ionization, Ion sources for positive and e ions, Application of accelerators: Basic research, medicine and y.
(ii)	Unit-II Particle Craft a Acceler Microti		Accelerators, Need for Charged particle Accelerators, Cock- and Walton Accelerator, Van-de-Graff Accelerator, Tandem rator, Linear Accelerators (LINAC), Cyclotron, Betatron, ron, TeV Accelerators, Particle Accelerators in India
(iii)	Unit-III	Transverse beam dynamics: Elements of beam Transport, Electrostatic and magnetic lenses, Dipole magnet, Quadrupole magnet, Equations of motion, field index, Betatron oscillations, Weak and strong focusing, Transfer matrix technique, Stability criterion, Phase space ellipse, Liouville's Theorem, Beam emittance.	
(iv)	Unit-IV	Longitudinal Beam Dynamics: Longitudinal phase space dynamics Momentum compaction, Phase stability, Equation of motion Synchrotron oscillation, Longitudinal emittance.	
14)	Text Books and References:		
(i)	Accelerator Physics	Accelerator Physics, S. Y. Lee.	
(ii)	Helmut Wiedemann	Helmut Wiedemann, Particle Accelerator Physics.	
(iii)	M. Reiser, Theory and design of charged particle beams.		
(iv)	D. Edwards and M. Syphers, An introduction to the physics of high energy accelerators.		

(v)	S. Humphries, Principle of charge particle acceleration: Free on net
(vi)	Proceedings of CAS (CERN): Free on net

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Condensed Matter Physics-I
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course provides an introduction to a bunch of basic phenomena that collectively define Condensed Matter Physics or Solid State Physics. Emphasis will be given on developing a coherent path for understanding the set of rather diverse phenomena.
8)	Programme/course Objectives	• The aim of this course is to gain knowledge in condensed matter physics. This course can be very useful to get an expertise in area of crystal lattices, plasmons, electrons energy bands and magneto transport.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. On successful completion of the module students should be able to- Apply the concept of reciprocal lattice. Understand the plasma oscillations, Transverse optical m in plasma. Gain knowledge of quantum theory of lattice heat capacity. Understand the Experimental methods of studying F surface. Understand the Classical theory of magnetoconductivity and quantum theory of magnetic susceptibility.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science

12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Crystall Bravais matter, The rec Laue, p intensit	line solids, unit cells and direct lattice, two and three dimensional lattices, closed packed structures. Interaction of X-rays with absorption of X-rays. Elastic scattering from a perfect lattice. biprocal lattice and its applications to diffraction techniques. The owder and rotating crystal methods, crystal structure factor and y of diffraction maxima.
(ii)	Unit-II	Point c dislocat of impe Electron of solid	lefects, line defects and planer (stacking) faults. The role of tions in plastic deformation and crystal growth. The observation erfections in crystals, X-ray and electron microscopic techniques. Ins in a periodic lattice: Bloch theorem, band theory, classification s, effective mass. Tight-binding, pseudo potential methods.
(iii)	Unit-III	Fermi s resistan Parama Heisent Curie-V Domair	surface, de Hass van Alfen effect, cyclotron resonance, magneto ce, quantum Hall effect, Integer quantum Hall effect, gnetism- Langavin theory, Weiss theory of ferromagnetism, berg model and molecular field theory. Spin waves and magnons. Veiss law for susceptibility, Ferri- and antiferro-magnetic order. as and Bloch-wall energy.
(iv)	Unit-IV	Superco effect, s London BCS t applicat effect, superco	onductivity: critical temperature, persistent current, Meissner superconducting phase transitions, manifestations of energy gap. theory, Cooper pairing due to phonons. heory of superconductivity, Ginzsburg-Landau theory and tion to Josephson effect: d-c Josephson effect, a-c Josephson macroscopic quantum interference. Vortices and type II onductors, high temperature superconductivity (elementary).
14)	Text Books and References:		
(i)	Verma and Srivasta	va: Crys	tallography for Solid State Physics
(ii)	Azaroff: Introduction to Solids		ids
(iii)	Omar: Elementary Solid State Physics		
(iv)	Ashcroft & Mermin: Solid State Physics Kittel: Solid State Physics		
(v)	Chaikin and Lubensky: Principles of Condensed Matter Physics		
(vi)	Madelung: Introduction to Solid State Theory		
(vii)	Callaway: Quantum Theory of Solid State		
(viii)	Huang: Theoretical Solid State Physics		
(ix)	Kittel: Quantum Theory of Solids		

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Condensed Matter Physics-II
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course provides an introduction to a bunch of basic phenomena that collectively define Condensed Matter Physics or Solid State Physics. Emphasis will be given on developing a coherent path for understanding the set of rather diverse phenomena.
8)	Programme/course Objectives	• The aim of this course is to build an understanding of the various types of important topics of condensed matter physics like magnetism, surfaces and interface and superconductivity. These topics are essential for industrial applications in this field.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. On successful completion of the module students should be able to- Gain knowledge about bragg's law, reciprocal lattices, types of bonding. Understand the concept of Kronig-Penney (K-P) model, Brillouin zones. Learn about superconductivity and BCS theory.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science
12)	Course duration	One Semester
13)	Course Structure	

(i)	Unit-I	Crystalline and amorphous solids. The crystal lattice. Basis vectors. Unit
		cell. Symmetry operations. Point groups and space groups. Plane lattices
		and their symmetries. Three dimensional crystal systems. Miller indices.
		Directions and planes in crystals. Interplanar spacings, Simple crystal
		(SC) structures: ECC BCC Nacl CsCl Diamond and ZnS structure
		UCD structures
		HCF structure.
		X-ray diffraction by crystals. Laue theory. Interpretation of Laue
		equations Bragg's law Reciprocal lattice. Ewald construction. Atomic
		scattering factor Experimental methods of x-ray diffraction Neutron
		and electron diffraction
		Types of bonding. The van der waals bond. Cohesive energy of inert gas
		solids. Ionic bond. Cohesive energy and bulk modulus of ionic crystals.
		Madelung constant. The covalent bond. Metallic bond.
(ii)	Unit-II	Vibrations of one-dimensional monatomic and diatomic lattices.
		Infrared absorption in ionic crystals (one-dimensional model). Normal
		modes and phonons. Frequency distribution function. Review of
		Debye's theory of lattice specific heat. Anharmonic effects.
		Magnetic properties of solids. Diamagnetism, Langevin equation.
		Quantum theory of paramagnetism. Curie law. Hund's rules.
		Paramagnetism in rare earth and iron group ions. Elementary idea of
		crystal field effects. Ferromagnetism. Curie-Weiss law. Heisenberg
		exchange interaction Mean field theory Antiferromagnetism Neel
		point Other kinds of magnetic order. Nuclear magnetic resonance
		point. Other kinds of magnetic order. Publication magnetic resonance.
		Quantized free electron theory. Fermi energy, wave vector, velocity and
		temperature, density of states. Electronic specific heats. Pauli spin
		paramagnetism. Sommerfeld's model for metallic conduction. AC
(conductivity and optical properties, plasma oscillations. Hall effects.
(111)	Unit-III	Intrinsic and extrinsic semiconductors. Carrier concentration and Fermi
		levels of intrinsic and extrinsic semiconductors BandGap. Direct and
		indirect gap semiconductors. Hydrogenic model of impurity levels.
		Energy hands in solids. The Plack theorem Plack functions and their
		eigenvalues Review of the Kronig-Penney (K-P) model Brillouin
		zones. Number of states in the band Band gap in the near free electron
		model. The tight binding approximation. The fermi surface. Electron
		dynamics in an electric field. The effective mass. Concept of hole.
(iv)	Unit-IV	Superconductivity, Survey of important experimental results. Critical
		temperature. Meissner effect. Type-I and Type-II superconductors.

		Thermodynamics of superconducting transition. London equation.	
		London penetration depth. Energy gap. Basic ideas of BCS theory.	
		High- T_c superconductors.	
14)	Text Books and		
	References:		
(i)	F.C.Phillips: An int	roduction to crystallography (wiley) (3rd edition)	
(ii)	Charles A Wert and	l Robb M Thomson: Physics of Solids	
(iii)	J. P. Srivastava: Ele	ements of solid state physics (Prentice Hall India; 2nd edition).	
(iv)	Christmaan-solid state physics (academic press)		
(v)	John Singleton: Band theory and Electronic properties of Solids (Oxford University Press;		
	Oxford Master Series in Condensed Matter Physics).		
(vi)	Ibach & Luth: Solid State Physics		
(vii)	M. Ali Omar: Elementary solid state physics (Addison-wesley)		
(viii)	C. Kittel: Solid-stat	e physics (Wiley eastern)(5th edition).	

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	Condensed Matter Physics-III
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This course provides an introduction to a bunch of basic phenomena that collectively define Condensed Matter Physics or Solid State Physics. Emphasis will be given on developing a coherent path for understanding the set of rather diverse phenomena.
8)	Programme/course Objectives	• This course highlights some of the basic as well as advance concepts of condensed matter physics. The selection of the topics aims at giving the student a very clear picture of this subject to impart expertise in the subject.

9)	Course features and		Classroom teaching, conducting lab practical (hands on	
	Learning Outcomes		training). Audio video lecture using ICT. Online faculty for	
	<u> </u>		query solving. Online faculty for query solving.	
			The Students will be able to learn the following from this	
			course:	
			Basics of Lattice dynamics and Optical properties of solids	
			• Basic ideas about the The Lyddane-Sachs-Teller	
			(LST) relation. Polaritons. Localized lattice	
			vibrations.	
			 Introduction to , Jellium Model, Hartree and Hartree- 	
			Fock equation.	
			 Learn the basics of Spintronics, Multiferroics, Giant 	
			magnetoresistance (GMR), Colossal	
			magnetoresistance.	
10)	Who can attend /c	ourse	This course is suitable for students from Physics. CUJ Students of 6 th	
	audience		Semester can attend the course.	
11)	Course eligibili	itv/Pre-	10+2 with science	
	requisite			
12)	Course duration		One Semester	
13)	Course Structure			
(i)	Unit-I	Lattice	dynamics: Equation of motion of a vibrating lattice, Harmonic	
		approxi	mation. Atomic force constants. Dynamical matrix. Central and	
		non-cer	ntral forces. Dispersion relation. Vibrational properties of square	
		and cul	bic lattices, Acoustic and optical modes. Quantisation of lattice	
		vibratic	on. Optical modes in ionic crystals. The Lyddane-Sachs-Teller	
		(LST)	relation. Polaritons. Localized lattice vibrations. Frequency	
		distribu	a vibrating solid in the harmonic approximation. An harmonic eraction. Gruneisen constant, Mie-Gruneisen equation of state. Slow etron scattering in solids, Elastic/inelastic and Coherent/incoherent	
		of a v		
		interact		
		neutron		
		scatteri	ng.	
		Optical	properties of solids: Kramers-Kronig relations sum rule for	
		oscillat	or strengths. Direct and indirect interband transitions. Optical	
		absorption in Semiconductors and MottWannier excitations.		
(ii)	Unit-II	Many t	ody techniques: The basic Hamiltonian, Jellium Model, Hartree	
		and H	artree-Fock equation, interacting electron gas, Hartree-Fock	
		Density	Functional Theory Static screening Thomas Fermi	
		approxi	mation, Plasma Oscillations, Bohm Pines theory-Random Phase	

		Approximation, plasma oscillations, dielectric function of an electron	
		gas, Linhard dielectric function.	
(iii)	Unit-III	Superconductivity: Phenomenology: signatures of superconductivity in resistivity, susceptibility, heat capacity, IR reflectivity etc., fluxoid quantization, Cooper pairing: instability of the Fermi sea, BCS Hamiltonian and its diagonalization by Bogoliubov-Valatin transformation, ground state energy, gap equation, critical temperature, isotope effect, magnetic mechanisms of pairing, Ginzburg-Landau theory He_2 , Abrikosov vortex lattice, Josephson junction and Josephson effect, exotic symmetries of the order parameter. Coexistence of superconductivity and magnetism, applications of high Tc superconductors.	
(iv)	Unit-IV	 Ferrimagnetism and Antiferromagnetism: Ferrites, two sublattice models, Curie temperature and susceptibility, super exchange, magnetic bubbles. Exchange Hamiltonian, Dispersion relation, Zero-point sublattice magnetization, Thermal behavior of sublattice magnetization. Dielectric and Ferroelectrics: Ionic crystals, Polarization catastrophe, nature of phase transitions, Ferroelectricity, Piezoelectricity, Pyroelectricity. Advanced materials / Phenomenon: Spintronics, Multiferroics, Giant magnetoresistance (GMR), Colossal magnetoresistance (CMR), Labased Perovskite Con Fullerene 	
14)	Text Books and References:		
(i)	Theory of Superconductivity, J. Robert Schrieffer		
(ii)	Introduction to Superconductivity, 2nd Edition, by Michael Tinkham		
(iii)	O. Madelung – Introduction of Solid State Theory (Springer).		
(iv)	Solid State Physics: Ashcroft and Mermin		
(v)	Introduction to Magnetic Materials: B. D. Cullity		
(vi)	Ferrites: J. Smith & P. J. Wijn		
(vii)	M. Ali Omar: Elementary solid state physics (Addison-wesley)		
(viii)	C. Kittel: Solid-state physics (Wiley eastern)(5th edition).		

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	High Energy Physics I
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• The aim of high energy physics is to determine the most fundamental building blocks of matter and to understand the interactions between these particles. This course tries to give a deep understanding of the basic and advance concepts of high energy physics.
8)	Programme/course Objectives	• This subject aims to introduce some of the basic properties of quarks and terminology related to them. It is designed to impart knowledge about the quark models, quark-quark interactions and quantum chromodynamics.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students should be able to- Learn about the Nucleon resonances and baryon spectroscopy and Quark model of hadrons. Learn about the phenomenology of strange particles and their semileptonic and nonleptonic decays. Apply knowledge in understanding the Physics of heavy flavor particles and Cabibbo theory. Explain some of the basics of Quantum Chromodynamics and Quark-Quark interactions.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite	10+2 with science
12)	Course duration	One Semester
13)	Course Structure	

(i)	Unit-I	Static Quark Model of Hadrons: The Baryon Moments Decuplet, Quark spin and color, Baryon Octect, Quark-Antiquark combinations :- The pseudoscalar mesons, the vector mesons, leptonic decay of vector mesons, Baryon Magnetic moments, Heavy-meson spectroscopy and the quark model. J/ Ψ and upsilon states; Quark confinement and search for free quarks.	
(ii)	Unit-II	Nucleon Structure and Quark Model :Nucleon as a composite particle. Nucleon resonances and baryon spectroscopy. Quark model of hadrons, spin and flavour SU(6) wave functions of mesons and baryons. Mass formula for baryons and mesons. Calculation of magnetic moments.	
(iii)	Unit-III	Physics of heavy flavor particles: Phenomenology of strange particles and their semileptonic and nonleptonic decays. Cabibbo theory.Flavor oscillation, Discovery of quarks, Charm, bottom and top quarks.Quarkonium and their spectra. Predicted c-cbar and b-bar states with principal quantum numbers n= 1 & 2 with their properties. The quark-antiquark potential, Lepton-Quark symmetry, Quark mixing.Quark confinement and search for free quarks.	
(iv)	Unit-IV	Quantum Chromodynamics and Quark-Quark interactions, QCD potential at short distances, QCD potential at large distances (String model) Multijet events in e+e-annihilation, effects of quark interactions in Deep-Inelastic lepton-nucleon scattering, Running coupling constant : Quantitative predictions of QCD, q2evolution of structure functions, Comparison of Quark and Gluon distribution.	
14)	Text Books and References:		
(i)	Quarks and Leptons by .Halzen, F and Martin, A.D(John-Wiley)		
(ii)	Quarks and Partons by Close, F.E. (Academic Press)		
(iii)	Particle Physics Martin, B R and Shaw, G (John-Wiley)		
(iv)	Introductions to High Energy Physics by DonanldH.Perkins.		
(v)	Nuclear &Paticle Physics by E. Burcham		
(vi)	Elementary Particles by I.S. Hughes		
(vii)	Quarks, Leptons an	d Gauge fields by Kerson Huang	
(viii)	Introduction to Particle Physics by M.P. Khanna		

1)	Type of the Course	Disciplinary Core Course (Major-12)
2)	Name of the Course	High Energy Physics II
3)	Course Code	
4)	Total Credit	L-T-P=3-0-0=3 (three)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• The aim of high energy physics is to determine the most fundamental building blocks of matter and to understand the interactions between these particles. This course try to give a deep understanding of the basic and advance concepts of high energy physics.
8)	Programme/course Objectives	 The aim of this course is to acquire in-depth knowledge about Relativistic Kinematics, Ultra-relativistic Nucleus-Nucleus Collisions and Review of some Major High Energy Physics Experiments. This subject helps to build understanding of the various advanced concepts of high energy physics.
9)	Course features and Learning Outcomes	 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. On successful completion of the module students shoul able to- Learn about High Energy Hadron-Nucleon and Hadron-Nucleus interactions. Gain knowledge about Fermi Golden Rule, differential and total scattering cross sections. Understand the hydrodynamics of Quark-Gluon Plasma and phase diagram. Gain knowledge about Neutrino Flavour oscillation experiments and Physics Scenarios at RHIC and LHC energies.
10)	Who can attend /course audience	This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre-	10+2 with science
12)	Course duration	One Semester
13)	Course Structure	

(i)	Unit-I	Relativistic Kinematics: Review of Lorentz transformations for energy and momentum, four-vectors and invariants, Laboratory and Centre-of- momentum systems, calculation of energy, momentum and angle of particles produced in nuclear reactions in Lab. and centre-of-momentum frames and their transformations and calculation of threshold energies for particle production. Mandelstam variables, Fermi Golden Rule, differential and total scattering cross sections, Lorentz invariant phase space.	
(ii)	Unit-II	High Energy Hadron-Nucleon and Hadron-Nucleus Interactions: High energy hadron-nucleon collisions: Features of relativistic hadron- nucleon collisions upto very high energy, behaviour of elastic, inelastic and total cross-sections as a function of incident energy, multiplicity distribution. Rapidity and pseudorapidity variables.Lab. and CM rapidity. Maximum and minimum rapidities.Pseudorapidity distribution in projectile, target and central fragmentation regions.	
(iii)	Unit-III	Ultra-relativistic Nucleus-Nucleus Collisions, QGP formation and its Signatures:Ultra-relativistic nucleus-nucleus collisions: Glauber model of nucleus-nucleus collision, participant-spectator model, Bjorken estimate of the initial energy density, hydrodynamics of Quark-Gluon Plasma and phase diagram, global observables at RHIC and LHC energies, possible signatures of Quark-Gluon Plasma formation, dileponproduction,Drell-Yan Process in nucleus-nucleus collision, direct photon production, De-bye screening in the QGP, J/Ψsuppression in the OGP strangeness enhancement an isotropia flow and ist quenching	
(iv)	Unit-IV	Review of some Major High Energy Physics Experiments: Neutrino Flavour oscillation experiments and Physics Scenarios at RHIC and LHC energies.	
14)	Text Books and References:		
(i)	Pilkuhn, H.: The Interactions of Hadrons		
(ii)	Martin, L.P.: High Energy Hadron Physics (John Willey)		
(iii)	Collins, P.D.B. & Martin, A.D.: Hadron Interactions (Adam Hingler)		
(iv)	Hagedorn, R.: Relativistics Kinematics (Benjamin)		
(v)	Perkins, D.H.: Introduction to High Energy Physics(Addison wesley)		
(vi)	Halzen, F. and Martin, A.: Quarks and Leptons (John-Wiley)		
(vii)	Wong, C.Y.: Introduction to High Energy Heavy Ion Collisions (World Scientific)		
(viii)	Ferbel, T.: Experimental Techniques in High Energy Physics (Addison Wesley)		
(ix)	Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments (Narosa)		

1)	Type of the Course		Disciplinary Core Course (Major-12)
2)	Name of the Course		Quark gluon plasma and Quarkonium
3)	Course Code		
4)	Total Credit		L-T-P=3-0-0=3 (three)
5)	Floated by/Propose	d by	Department of Physics
6)	Who can teach this course		Faculties from Physics
7)	Overview		• Quark–gluon plasma is studied to recreate and understand the high energy density conditions prevailing in the Universe when matter formed from elementary degrees of freedom (quarks, gluons) at about 20µs after the Big Bang.
8)	Programme/course Objectives		• Objective of this course is to learn about quark gluon plasma and quarkonium. This course is gives the idea of advance topics of high energy physics.
9)	Course features and Learning Outcomes		 Classroom teaching, conducting lab practical (hands on training). Audio video lecture using ICT. Online faculty for query solving. Online faculty for query solving. Upon successful completion of this course it is intended that a student will be able to: Describe the Quark Gluon Plasma and Glauber model of Nucleus Nucleus Collisions. Explain the Quarkonium suppression by a quark gluon plasma, Quarkonium suppression by hadrons. Learn about the Phase transition in nuclear physics, Energy momentum tensor, Hydrodynamic equations.
10)	Who can attend /course audience		This course is suitable for students from Physics. CUJ Students of 6 th Semester can attend the course.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Quarks Gluon l Baryon estimate	and gluons, Bag Model of hadron, Quark Gluon Plasma, Quark Plasma at high temperatures, Quark Gluon Plasma with a High Density, Glauber model of Nucleus Nucleus Collisions, Bjorken e of initial energy density in high energy Nucleus Nucleus

		Collisions.	
(ii)	Unit-II	Introduction to Quarkonium in heavy ion collisions, Quarkonium level at T=0, Quarkonium production, Quarkonium suppression by a quark gluon plasma, Quarkonium suppression by hadrons, Nucleus Nucleus collisions.	
(iii)	Unit-III	Review of thermodynamics, Phase transition, Phase transition in nuclear physics, Energy momentum tensor, Hydrodynamic equations, and Solution of Hydrodynamic equations: longitudinal expansion, Solution of Hydrodynamic equations: Transverse (radial) expansion	
14)	Text Books and References:		
(i)	Introduction to high energy heavy ion collisions- C. Y. Wong		
(ii)	Ultra relativistic heavy ion collisions- R. Vogt		
(iii)	Introduction to relativistic heavy ion collisions- L. P. Csernai		

Minor Papers (Offered by Physics to other department students)

1)	Type of Course	Disciplinary/Interdisciplinary (Minor Course-1)
2)	Name of the Course	Applied Physics: Physics-I
3)	Course Code:	
4)	Total Credit:	L+T+P=3+0+0=3
5)	Floated by/Proposed by	Departments of Physics
6)	Who can teach this course	Faculty from Department of Physics

7)	Overview	The objective of this course is to familiarize the students with basic of Vectors, Static Electric and Magnetics fields, Rigid body dynamics, Mechanical properties of matter, and Oscillations and Waves. It aims to equip the students to deal with basic problems that they would be seeing in the real world.
8)	Programme/course objective	 The students will learn: The basics of vector calculus like differentiation and Integration. The concepts of static electric and magnetic fields. The applications of the rigid body dynamics and mechanical properties of matter. The basic terminology used in understanding
9)	Course features and learning outcome	 waves and oscillations. At the end of the course, students will demonstrate the ability To use vectors in various co-ordinate systems. To explain the properties of static electric and magnetic fields To use and apply the Moment of inertia, Rigid body kinematics, Rigid body kinetics. To understand mechanical concepts of matter like Modulus of rigidity, Viscosity and use Poiseulle's equation. To explain the different types of harmonic oscillations, along with the reflection and transmission of waves.
10)	Who can attend the course	This course is suitable for students from science background.
11)	Course Eligibility/Pre- requisite	10+2 with science
12)	Course Duration:	One Semester

13)	Course Structur	·e	
(i)	Unit I	Review	of Vector calculus
		Vector scalar orthogo spherics Integrat coordin	algebra addition, Subtraction, components of vectors, and vector multiplications, triple products, three onal coordinate systems (rectangular, cylindrical and al). Vector calculus differentiation, partial differentiation, tion, vector operator del, gradient, divergence and curl, theorems of vectors. Conversion of vector from one tate system to another.
(ii)	Unit-II	Static e	electric Field
		Coulon charges and its differer configu density	b's law, Electric field intensity, Electrical field due to Line, surface, Volume charge distributions. Gauss law applications. Absolute electric potential, Potential nce, calculation of potential differences for different trations. Electric dipole, electrostatic energy and energy
(iii)	Unit-III	Static I	Magnetic field
		Biot-Sa flux de magnet	wort's Law, Ampere Law, Magnetic Flux and Magnetic ensity, Scalar and Vector magnetic potentials, steady ic fields produced by current carrying conductors.
(ii)	Unit-IV	Rigid H	Body Motion
		Rigid b body ki	oody, Moment of inertia, Rigid body kinematics, Rigid netics, Motion of gyroscope.
(iii)	Unit-V	Mecha	nical Properties of Matter
		Modulu differen liquid	as of rigidity, Poisson's ratio, relation connecting at elastic-constants, Viscosity, Poiseulle's equation of flow through a narrow tube.
(iv)	Unit-VI	Oscilla	tions and Waves
		Simple forced of of one transmi	harmonic oscillation damped harmonic oscillation and oscillation, Q factor and resonance. Differential equation dimensional wave and its solution, reflection and ssion of waves.
14)	Text Book and References:		

(i)	Physics Part-I: Resanick and Halliday Vol I, Edition 5 (2007).
(ii)	Mechanics: D.S. Mathur S. Chand Publishing Edition Ist(2000).
(iii)	Concepts in Physics Vol .I : H.C.Verma, Dhanpat Rai and Co. Edition Ist.
(iv)	Mechanics: R.K. Shukla and Anchal Srivastava New Age International Publishers(2006).
(v)	An Introduction to Mechanics: D. Kleppner and R. Kolenkow, Ist Edition, McGraw Hill (2017).
(vi)	Mechanics (Berkeley Physics Course) Vol. I: C. Kettel, W. D. Knight, M.A. Ruderman and A.C. Helmholz edition 2nd, McGraw Hill Education, (2017).

Semester-II

1)	Type of the Course	Disciplinary/Interdisciplinary (Minor Course -2)	
2)	Name of the Course	Applied Physics: Physics-II	
3)	Course Code		
4)	Total Credit	L+T+P=3+0+0=3	
5)	Floated by/Proposed by	Department of Physics	
6)	Who can teach this course	Faculties from Physics	
7)	Overview	• This course is concentrated on electrostatics, electrodynamics and relativity. Topics include Gauss law, polarization, ohms law, electromagnetic waves and, Poynting's theorem. This course also provides a brief introduction to relativity and its consequences	
8)	Programme/course Objectives	• This subject explains about the concepts of electrostatics, electrodynamics and relativity that are useful to get the solution of physical problems. The subject covers the important topics that make the interpretation of physics easy.	
9)	Course features and Learning Outcomes	 Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be able to- Recognize basic terms in electrostatics, electrodynamics. Apply the different laws to solve physical problem. Basic understanding on electromagnetic wave. Understand the relativity and its consequences 	

			• Understand physical problem from relativity point of view.
10)	Who can attend /course audience		This Course suitable for students from science background.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure))	
(i)	Unit-I	Electros Coulomb applicatio Poisson's Potential E, linear	tatics b's Law, Gauss's law (integral and differential form) and its ons, Energy of a charge distribution, Laplace's and equations, Conductors, Method of images, Field and due to dipole. Polarization in a dielectric, vectors D, P and dielectrics, force on dielectrics,
(ii)	Unit-II	Electric Line, su conductiv dissipatio	Currents rface and volume currents and current densities, electrical vity and Ohm's law, equation of continuity, energy on, Motion of charged particles in electric and magnetic fields.
(iii)	Unit-III	Electrod Electrom inductand Maxwell dielectric	ynamics agnetic induction, motional emf and Faraday's law, ce and energy in magnetic field, the displacement current, 's equations, Electromagnetic Wave: E. M wave in vacuum, es and conductors, Poynting's- theorem, Fresnel's equation
(iv)	Unit-IV	Relativit Galilean its consec of veloci energy re	y transformation, axioms of relativity, Lorentz transformation and quences: length contraction, time dilation, simultaneity, addition ty, variation of mass with velocity (derivation not required), mass elation.
14)	Text Books and References:		
(i)	D.J.Griffiths, Intro	oduction to	electrodynamics 3rd Ed., 1998
(ii)	E.M. Purcell, Electricity and Magnetism (Berkeley Physics course) 2nd Ed.		
(iii)	H.S. Mani & G.K. Mehta, Introduction to Modern Physics		
(iv)	R.P. Feynman, R. B. Leighton and M. Sands, The Feynman Lecture of Physics Vol		
(v)	Introduction to Special Relativity: Robert Resnick		

1)	Type of the Course	Disciplinary/Interdisciplinary (Minor Course -3)
2)	Name of the Course	Modern Physics

3)	Course Code	
4)	Total Credit	L+T+P=4+0+0=4 (Four)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This subject is a comprehensive study of modern physics that emphasizes concepts and problem solving. Modern physics generally means the breakthroughs in special relativity and quantum mechanics during the early 1900's. This course includes that part of classical physics that failed to explain certain well-known experiments. In the late 1800's classical physics consisted of Newton's Laws, Maxwell's equations, and thermodynamics. As these failures became more worrisome to prominent scientist, new ideas began to emerge and special relativity and quantum physics were born. This course is about the emergence of special relativity, quantum physics and the Schrodinger equation and application of the latter to new phenomena.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of modern physics such as origin of quantum mechanics, atomic models, lasers, nuclear structure and fundamentals of radioactivity.
9)	Course features and Learning Outcomes	 Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be able to- Understand the atomic models like Thomson's Atom Model, Rutherford's Nuclear Atom Model, Bohr's Theory of Atomic Structure. Explain and use the Photoelectric effect, Compton effect, etc. Understand the Basic idea of The Franck-Hertz Experiment, Space Stern and Gerlach Experiment. Apply knowledge in understanding the of radioactive decay, Basic idea of α, β and γ-decay Explain some of the basic properties and reactions of nucleons.
10)	Who can attend /course	This course suitable for students from Science and Engineering

	audience		Background.
11)	Course eligibility/Pre-		10+2 with science
	requisite		
12)	Course duration		One Semester
12)			
13) (i)	Course Structure) Origin	f Ouentum Theory
	Unit-1	Inadequa Quantiza Theory, Confirma Applicat	acy of Classical Mechanics, The Franck-Hertz Experiment, Space tion: Stem and Gerlach Experiment, Limitations of old Quantum Wave Nature of Particles: Matter Waves, Experimental ation of Particle Waves, G. P. Thomson's Experiment, ions of Electron Diffraction, Bohr's Correspondence Principle.
		Atomic S	Structure of Matter
		Thomson Spectrum Hydroge Finite Hydroge Ionisatio of Spec Fluoresce	n's Atom Model, Rutherford's Nuclear Atom Model, Hydrogen n, Bohr's Theory of Atomic Structure, Bohr's Theory of n Atom, Sommerfeld correction, Spectrum of Ionised Helium, Mass Correction, Discovery of Heavy Hydrogen (Deutron), n Like Spectra, Alkali AtomicSpectra, Excitation and n Potentials, Experimental Evidence for Quantisation, Types ctra, Emission and Absorption Line (atomic) Spectra, enceand Phosphorescence.
(ii)	Unit-II	Photoele	ectric effect and Emission spectrum
		Introduct of Comp X-rays Production of the In Origin of Absorpti Determin	tion, Einstein's photoelectric equation, Compton effect, Theory oton effect, Applications of photoelectric effect. on of X-rays: Coolidge Tube, Properties of X-rays, Measurement tensity of X-rays, Variation of X-ray Intensity with Wavelength, f Continuous Spectrum, Origin of Characteristic X-ray Spectrum, on of X-rays, Moseley'sLaw, X-ray diffraction, Bragg's law, nation of crystal structure.
(iii)	Unit-III	Radioac	tivity
		Natural fundame and aver damage, semicono productio artificial geologica	and artificial radioactivity, Properties of a, β and y rays, ntal laws of radioactivity, radioactive disintegration, half rage life periods, activities of radioactive substances, radiation radiation detectors: G M Counter, Scintillation counter, ductor detectors, bubble chamber, spark chamber detector, on of artificial radioactivity, radio-isotopes, application of radioactivity, radioactive dating (radiometric, carbon and al).
(iv)	Unit-IV	The Nuc	leus and Nuclear Energy
		Nuclear Constitue Stable N	Mass, Nuclear Size, Angular Momentum of the Nucleus, ents of the Nucleus, Neutron as Building Block, Binding Energy, fuclei, Decay of Unstable Nuclei, Nuclear Fission, Spontaneous

		Fission and Potential Barrier, Emission of Neutrons in Fission, Self-
		Sustaining Chain Reaction: Nuclear Reactor, Neutron Balance in
		Reactor, Uncontrolled Chain Reaction-Bomb, Nuclear Fusion,
		Controlled Fusion, Fusion in Stars.
14)	Text Books and	
	References:	
(i)	J.B.Rajam, Moder	n Physics
(ii)	S.L. Kakani& S. I	Kakani, Modern Physics
(iii)	.S. Mani & G.K. M	Mehta, Introduction to Modern Physics
(iv)	A.S.Vasudeva,Mo	odern Physics

Semester-IV

1)	Type of the Course	Disciplinary Core Course (Minor-4)
2)	Name of the Course	Optics
3)	Course Code	
4)	Total Credit	L+T+P=4+0+0=4 (Four)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• The aim of this course is to acquire in-depth knowledge of waves, superposition of harmonic waves, standing waves, acoustics, nature of light, interference of light by division of wave front, Interference of light by division of amplitude, Fraunhofer diffraction, Fresnel Diffraction and Polarization.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of optics such as interference, Diffraction, Polarization etc.
9)	Course features and Learning Outcomes	 Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be able to- Learn about different properties of waves, characteristics of wave motion, particle and wave velocities and superposition of harmonic waves.

			• Understand the standing waves, absorption coefficient,
			Sabine's Reverberation Formula.
			• Gain knowledge about the factors affecting acoustics in buildings.
10)	Who can attend /course audience		This course suitable for students from Science and Engineering Background.
11)	Course eligibility/Pre- requisite		10+2 with science
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Waves	
		Plane an	nd Spherical Waves. Longitudinal and Transverse Waves.
		Characte	ristics of wave motion, Plane Progressive (Travelling) Wave and
		its equati	on, Wave Equation – Differential form (derivation). Particle and
		Wave Ve	elocities: Relation between them, Energy Transport – Expression
		for inten	sity of progressive wave, Newton's Formula for Velocity of
		Sound. I	Laplace's Correction (Derivation). Brief account of Ripple and
		Gravity V	Waves.
(ii)	Unit-II	Superpo	sition of Harmonic Waves
		Linearity oscillatio (Beats) –	and Superposition Principle. Superposition of two collinear ns having (a) equal frequencies and (b) different frequencies Analytical treatment.
(iii)	Unit-III	Standing	g Waves
		Velocity of transverse waves along a stretched string (derivation), Standing (Stationary) Waves in a String - Fixed and Free Ends (qualitative). Theory of Normal modes of vibration in a stretched string, Energy density and energy transport of a transverse wave along a stretched string. Vibrations in rods – longitudinal and transverse modes (qualitative). Velocity of Longitudinal Waves in gases (derivation).	
(iv)	Unit-IV	Acoustic	S
		Absorpti	on coefficient, Reverberation and Reverberation time, Sabine's
		Reverber	ation formula (derivation), Factors affecting acoustics in
		buildings	, Requisites for good acoustics. Acoustic measurements –
		intensity	and pressure levels.

		Nature of light		
		The corpuscular model of light-The wave model-Maxwell's electromagnetic waves, Wave Particle Duality		
14)	Text Books and			
	References:			
(i)	The Physics of V	Vaves and Oscillations, N K Bajaj Tata McGraw-Hill Publishing		
	Company Ltd., Second Edition, 1984			
(ii)	Waves and Oscillations N Subramanyam and Brij Lal Vikas Publishing House Pvt. Ltd.,			
	Second Revised Edition 2010			
(iii)	A Text Book of Sound, D R Khanna and R S Bedi, Atma Ram & Sons, Third Edition, 1952			
(iv)	Oscillations and Waves, Satya Prakash, Pragathi Prakashan, Meerut, Second Edition 2003			
(v)	Optics, Ajoy Ghatak, McGraw Hill Education, (India) Pvt Ltd, 2017			
(vi)	A text Book of Optics, Brij Lal, M N Avadhanulu & N Subrahmanyam, S. Chand			
	Publishing 2012			

Laboratory Syllabus (2 Credits)

Semester-V

1)	Type of the Course	Disciplinary/Interdisciplinary (Minor Course-5)
2)	Name of the Course	Solid State Devices
3)	Course Code	
4)	Total Credit	L+T+P=4+0+0=4 (Four)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This subject has a motive of giving student an idea of the electrical instrument used. The working of these instruments and their applications in daily life can be useful in making the subject more interesting. The topics selected are good for developing basics of electrical systems.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of solid state devices such as Kirchoff's laws, Semiconductors based devices, Applications of CRO etc.
9)	Course features and Learning Outcomes	Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be

			able to-	
			• Learn the usage of Kirchoff's current and voltage laws,	
			loop and nodal analysis of simple circuits.	
			• Understand the General principle and performance	
			equations of D'Arsonval Galvanometers.	
			• Gain knowledge about the Peizo-Electric transducers,	
			Optical Transducer, Hall Effect Transducer.	
			• Learn about the use of CRO in measurement of frequency,	
10)			phase, Amplitude and rise time.	
10)	Who can attend /course audience		This course suitable for students from Science and Engineering Background.	
11)	Course eligibi	ility/Pre-	10+2 with science	
	requisite			
12)	Course duration		One Semester	
13)	13) Course Structure			
(1)	Unit-1	Voltage and current sources, Kirchoff's current and voltage laws, loop and		
		nodal an	alysis of simple circuits with dc excitation. Ammeters, voltmeters:	
		(DC/AC)), Representation of sinusoidal waveforms, peak and rms values,	
		power	factor. Analysisofsingle-phaseseriesandparallelR-L-	
	Caccircu		its.Three-phasebalanced circuits, voltage and current relations in	
		star and	delta connections. Watt-meters: Induction type, single phase and	
		three pha	ase wattmeter, Energy meters: AC. Induction type single phase and	
		three ph	ase energy-meter, Instrument Transformers: Potential and current	
		transform	ners, ratio and phase angle errors, phasor diagram, methods of	
		minimizing errors; testing and applications.		
(ii)	Unit-II	Galvanometers: General principle and performance equations of D'Arsonval Galvanometers, Vibration Galvanometer and Ballistic Galvanometer, Potentiometers: DC Potentiometer, Crompton		
		potention DC/AC	neter, construction, standardization, application. AC Potentiometer, Bridges: General equations for bridge balance, measurement of self	
		Hay's bridge, e	ridge, Owen's bridge, measurement of capacitance by Schearing rrors, Wagner's earthing device, Kelvin's double bridge.	
(iii)	Unit-III	Transduc	cer: Strain Gauges, Thermistors, Thermocouples, Linear Variable	
		Different	tial Transformer (LVDT), Capacitive Transducers, Peizo-Electric	
		transduce	ers, Optical Transducer, Hall Effect Transducer CRO: Block	

		diagram, Sweep generation, vertical amplifiers, use of CRO in measurement	
		of frequency, phase, Amplitude and rise time of a pulse. Digital Multi-meter:	
	Block diagram, principle of operation, Basics of lead acid batteries, Lithiu		
	Ion Battery, Battery storage capacity, Coulomb efficiency, Numerical		
		high and low charging rates, Battery sizing.	
14)	Text Books and		
	References:		
(i)	D C Kulshreshtha	, Basic Electrical Engineering, Mc Graw Hill Publications, 2019	
(ii)	David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement		
	Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005		
(iii)	Vincent Del Toro, Electrical Engineering Fundamentals Prentice Hall India2009		
(iv)	A.D. Helfrick& W.D. Cooper, Modern Electronic Instrumentation and Measurement Techniques,		
	PHI,2016		

1)	Type of the Course	Disciplinary/Interdisciplinary (Minor Course -6)
2)	Name of the Course	Numerical Methods and Programming
3)	Course Code	
4)	Total Credit	L+T+P=4+0+0=4 (Four)
5)	Floated by/Proposed by	Department of Physics
6)	Who can teach this course	Faculties from Physics
7)	Overview	• This subject has a motive of giving student an idea of the electrical instrument used. The working of these instruments and their applications in daily life can be useful in making the subject more interesting. The topics selected are good for developing basics of electrical systems.
8)	Programme/course Objectives	• In this course students would be able to understand the topics that make the basis of solid state devices such as Kirchoff's laws, Semiconductors based devices, Applications of CRO etc.
9)	Course features and Learning Outcomes	 Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be able to- Learn the usage of Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits.

			• Understand the General principle and performance	
			equations of D'Arsonval Galvanometers.	
			• Gain knowledge about the Peizo-Electric transducers,	
			Optical Transducer, Hall Effect Transducer.	
			• Learn about the use of CRO in measurement of frequency, phase, Amplitude and rise time.	
10)	Who can attend /course		This course suitable for students from Science and Engineering	
11)	audience	··· /D	Background.	
11)	requisite	inty/Pre-	10+2 with science	
12)	Course duration		One Semester	
13)	Course Structure	<u>,</u>		
(i)	Unit-I	Numerio	al Methods of Analysis:	
		Solution	of algebraic and transcendental equations: Iterative, bisection and	
		Newton	Raphson methods, Solution of simultaneous linear equations :	
		Matrix i	nversion method. Interpolation: Newton and Lagrange formulas	
		Numorio	al differentiation Numerical Integration Transzoidal Simpson and	
			ar differentiation, Numericar integration, Trapezoidar, Simpson and	
		Gaussian	quadrature methods, Least-square curve fitting, Straight line and	
		polynom	ial fits, Numerical solution of ordinary differential equations : Euler	
		and Rung	ge-Kutta method.	
(ii)	Unit-II			
		Fortran		
		Flow charts, Algorithms, Integer and floating point arithmetic, Precision, Variable types, Arithmetic statements, Input and output statements, Control statements, Executable and non-executable statements, Arrays, Repetitive and logical structures, Subroutines and functions, Operation with files, Operating systems, Creation of executable programs.		
14)	Text Books and References:			
(i)	Computer Oriented Numerical Methods · V. Raiaraman			
(ii)	Computer of Shendar Wallerear Welloads . V. Rajaraman			
(iii)	Applied Numerical Analysis: Gerald.			
(iv)	Computer Programming in FORTRAN 90 and 95: V. Rajaraman			

Semester-I (for Ist Semester)

1)	Type of the Course		Multi/Inter disciplinary Course (MDC -1)
2)	Name of the Course		Apparatus and Instrumentation: OPTICS-I
3)	Course Code		
4)	Total Credit		3 (Three)
5)	Floated by/Proposed by		Department of Physics
6)	Who can teach th	nis	Faculties from Physics
	course		
7)	Overview		• This course allows for the students to understand basics principles, theory and construction of apparatus/setups in different areas of applied physics and provide basic training of their handling.
8)	Programme/course Objectives		• To make students understand basics principles, theory and construction of apparatus/setups in different areas of applied physics so that their experimental skilled are enhanced. Further, they can go to higher studies and develop expertise in an area of their choice.
9)	Course features and Learning Outcomes		Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be able to do experiments in a better way. Further, they can go to higher studies and develop expertise in an area of their choice
10)	Who can attend /course audience		This Course suitable for students from other than Science and Engineering Background.
11)	Course eligibility/Pre- requisite		Students from other than science and Engineering Background.
12)	Course duration		One Semester
13)	Course Structure		
(i)	Unit-I	Reflectio thick lens	n and refraction, lenses, optical systems and cardinal points, ses
(ii)	Unit-II	Matrix m	ethod, dispersion, lens aberration
(iii)	Unit-III	Optical in	nstruments
14)	Text Books and References:		
(i)	A textbook of opti	cs by N. S	ubramanian, Brij Lal and M. N. Avadhanulu
(ii)	Optics by Benjamin Crowell		
(11)	Optics by Denjannin Clowen		

Multi Disciplinary courses: Apparatus and Instrumentation in Physics

Semester-II (for 2nd Semester)

1)	Type of the Cour	se	Multi/Inter disciplinary Course (MDC -2)
2)	Name of the Course		Apparatus and Instrumentation (OPTICS-II)
3)	Course Code		
4)	Total Credit		3 (Three)
5)	Floated by/Proposed by		Department of Physics
6)	Who can teach th course	nis	Faculties from Physics
7)	Overview		• This course allows for the students to understand basics principles, theory and construction of apparatus/setups in different areas of applied physics and provide basic training of their handling.
8)	Programme/course Objectives		• To make students understand basics principles, theory and construction of apparatus/setups in different areas of applied physics so that their experimental skilled are enhanced. Further, they can go to higher studies and develop expertise in an area of their choice.
9)	Course features and Learning Outcomes		Class room teaching, Conducting Lab practical (hands on training), Audio video lecture using ICT, Online faculty for query solving. On successful completion of the module students should be able to do experiments in a better way. Further, they can go to higher studies and develop expertise in an area of their choice
10)	Who can attend /course audience		This Course suitable for students from other than Science and Engineering Background.
11)	Course eligibility/Pre- requisite		Students from other than science and Engineering Background.
12)	Course duration		One Semester
13)	Course Structure)	
(i)	Unit-I	Basic wa laser bear	ave optics (Interference, Diffraction, Polarization) Features of a m
(ii)	Unit-II	Basics of	Fiber Optics
(iii)	Unit-III	Optical in	nstruments, Optical setups and optics experiments
14)	Text Books and References:		
(i)	A textbook of opt	ics by N. S	ubrahmanyam, Brij Lal and M. N. Avadhanulu
(ii)	Optics by Ajoy Ghatak		

EXPERIMENTAL PHYSICS (4-0-0)

Unit-I: Particle Accelerators

Ion Sources, Cock-Craft-Walton and Voltage Generator, Van-de-graffAccelerator, Tandem Accelerator, Pelletron Accelerators, Folded Tandem Accelerators, Linear Accelerators (LINAC) or Drift tube Linear accelerators, Cyclotron, Betatron, TeV Accelerators, Particle Accelerators in India

Unit-II Detection and Measurement of Nuclear Radiation

Basic Idea about detection of nuclear radiation, Ionisation Chamber, Proportional Counter, Geiger-Muller counter (G.M. Counter), Scintillation Counters, Scintillation Detector for Gamma ray Spectroscopy, Semiconductor Detectors, Surface Barrier Detectors, Germanium-Lithium (Ge-Li) and HPGe Detectors, Modern Cloud Chamber, Multiwire Proportional Chambers (MWPC)

Unit-III:Optical Properties of Materials

Experiments to study optical properties of materials: Basics of rotational, vibrational, infrared and Raman spectroscopy. Working principle and experimental design of UV-Vis spectrometer, Photo luminescence spectrometer, FTIR spectrometer and RamanSpectrometer and data analysis.Experiments to study thermal properties of materials: Basics of thermo gravimetric, differential thermal analysis and differential scanning calorimetry techniques. Workingprinciple, experimental design and data analysis

Recommended books

 W.R. Leo by Techniques for Nuclear and Particle Physics Experiments (Narosa)
 S. S. Kapoor and V. S. Ramamurthy by Nuclear Radiation Detectors (New Age)
 R. M. Singru by Introduction to Experimental Nuclear Physics (Wiley Eastern Pvt.)
 Rohit P. Prasankumar, Optical Techniquesfor Solid-State Materials Characterization.
 Fiorilloand Isaak D. Mayergoyz, Characterization and Measurement of

Magnetic Materials.

COMMUNICATION ELECTRONICS (4-0-0)

Communication Networks: Introductions Types of network, Network topologies, Networks protocols, Networks Architecture.

Review of Analog and Digital communications, Introduction to Amplitude, Frequency and phase Modulation and their frequency spectra.

Pulse communication: Information theory, Coding, Noise in an information carrying channel, Pulse modulation - Pulse Amplitude Modulation, Pulse Width Modulation, Pulse Position Modulation, Pulse Code Modulation.: concept of Time Division Multiplexing.

Optical Fibre communication: Principle and techniques of electro-optic modulation. Constituents of optical communication system, propagation of light in optical fibre.

Satellite communication: Introduction to microwave electronics, principle of velocity modulation, General structure of Satellite communication, Merits and drawbacks, Active and Passive satellites, Concept of digital modulation (Amplitude shift keying, Frequency shift keying, Phase shift keying), Digital satellite communication.

Recommendedbooks

- 1. Fraser, Telecommunications.
- 2. GuptaandKumar,HandbookofElectronics.
- 3. SimonHaykin, Principles ofCommunication Systems, JohnWiley.
- 4. GeorgeKennedyandBernardDavis,ElectronicsandCommunication System,

TMH.

- 5. RoddyandCoolen,Electronicscommunication.
- 6. D.C.AgrawalandA.K.Maini,SatelliteCommunication.
- 7. T.PrattandC.W.Bostiem,SatelliteCommunication
- 8. G.E.Optical Fiber Communications, McGraw-Hili

OPTO ELECTRONICSAND FIBRE OPTIC COMMUNICATION (4-0-0)

Fermat's Principle and its applications, Revision of basics of reflection, refraction, transmission and absorption of light radiation, Ray tracking through mirrors, lenses, prisms, etc. Refractive index and total internal reflection.

Introduction of optical fiber (step index, graded index, single-mode and multimode light propagation in optical fibre, dispersion and losses in optical fibers, fiber manufacturing

Basic constituents of optical communication system, Optical transmitters: LEDs and Laser diode - working principle and applications, Optical receivers: Photo-detectors, Optical amplifiers: WDM systems.

Introduction to electro-optics, Principle and technique of electro-optic modulation. "Introduction to liquid crystals, LED and Liquid Crystal Display.

Recommended Books;

- 1. R.P.Khare, FibreOptiCS and Optoelectronics, OxfordPress.
- 2. J.WilsonandJ.Hawkes, Optoelectronics-AnIntroduction, PrenticeHall.
- 3. A.K.GhatakandK.Thyagarajan,Introduction

ToFibreOptics,CambridgeUniv.Press.

4. G.E.Keiser,OpticalFiberCommunications, McGraw-Hili. 5. P.K.Chea,FiberOptiCS,DevicesandSystems.

RADIATION PHYSICS (4-0-0)

Unit-I: Idea of Nuclear Processes in Radioactive Sources

Characteristic of nuclear radiations, alpha decay, beta decay, electron capture, gamma emission, annihilation radiation, alpha Sources, gamma Sources, neutron sources, source activity, law of radioactive decay, statistical error of nuclear physics, radioactive growth and decay, decay chains

Unit-II: Nuclear Radiation Passes Through Matter

cross-section, interaction probability in a distance and mean free path, stopping power of charged particles, straggling, Qualitative discussion of Bethe-Bloch formula, Radiation length, Half thickness, range of electrons, interaction of photons, neutrons and charged particles with matter

Unit-III: Characteristics of Detectors:

Sensitivity, Detector response, Energy resolution, Response time, Detector efficiency, Dead time, Recovery time, Ionization mechanism and introductory idea of some charged particle, gamma rays and neutron detectors.

Unit-IV: Protection of Radiation

Dosimeter, Dosimetric Units, Roentgen, Absorbed dose, Relative Biological effectiveness (RBE),Equivalent dose, Effective Dose, Typical doses from sources (Natural, Enviro nmental & Medical exposures), Radiation shielding and its safety (Gamma-rays, electrons, positrons, charged particles, Neutrons), Ethics of radiations.

Unit-IV: Radiation Effects on Biological Systems:

High doses received in a short time, Low-level doses limits, direct ionization of DNA, radiation damage

to DNA, Biological effects (Genetic, Somatic, Cancer and sterlity).

Recommended Books:

1) Introduction to Experimental Nuclear Physics by R.M. Singru.

- 2) A Primer in Applied Radiation Physics by F.A. Smith.
- 3) Radiation Biophysics by E.L. Alpen.

4) Atom, Radiation and Radiation Protection by J. Turner.

SEC - COMPUTATIONAL PHYSICS

Interpolation: Finite differences; Newton's forward and backward interpolation formula; Lagrange's formula; Central differences; Method of least squares.

Solution of algebraic and transcendental equations: Iterative methods, Newton-Raphson method.

Matrices: Eigen value and eigen vectors, matrix decomposition, inverse of matrix, norm of matrix. **Solution of System of Linear equations**: Direct methods: Gauss elimination method, LU – Decomposition, Cholesky method, iteration methods: Jacobi method, Gauss-Seidel method. **Numerical solution of ordinary differential equations:** Euler method, Modified Euler method and Runge-Kutta method.

Finite difference method: Solution of boundary value problems of ordinary and partial differential equations.

Books Suggested:

1. S. S. Sastry. Numerical Analysis, Prentice Hall of India Pvt. Ltd., New delhi.

2. M. K. Jain et. al. Numerical Methods for Scientists and Engineers, New Age International Publishers, New Delhi.