

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Curriculum and Syllabus

For

M.Sc. in Mathematics

Effective from Session 2021-23

Department of Mathematics School of Natural Sciences

Central University of Jharkhand, Ranchi 835222, Jharkhand

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

About the Department

The Department of Mathematics (as Centre for Applied Mathematics) was started in July 2009 under the School of Natural Sciences of Central University of Jharkhand. This department is first in Jharkhand to offer 5 years' integrated M.Sc. programs in Applied Mathematics from the year 2009 to 2016. It has started M. Sc. Program in Mathematics since 2017. It also offers PhD. program in Mathematics and allied subjects since the year 2013.

Mission of the Department

- To advance the logical, analytical thinking and development of scientific practice with applications among the students so that they can flourish themselves in areas of Pure and Applied Mathematics, Financial mathematics, Computer Science, Scientific Computing, Statistical Methods, Information Technology and Actuarial Science etc.
- To produce Mathematics scholars for management and operational research studies also for large corporations and leading manufacturing enterprises. The department also committed to produce most brilliant brains in academics.

Vision of the Department:

- The department aims to provide high-quality education in mathematics at all levels, from undergraduate to graduate studies. This includes fostering a deep understanding of mathematical concepts, promoting critical thinking skills, and preparing students for a wide range of careers or further academic pursuits.
- 4 A strong emphasis is placed on advancing the frontiers of mathematical knowledge through research. This involves both fundamental research aimed at solving theoretical problems and applied research addressing real-world challenges. The department seeks to foster a vibrant research community, where faculty and students collaborate on cutting-edge projects and contribute to the global body of mathematical knowledge. The department strives to earn regional recognition for its expertise in the field of mathematics and the teaching of mathematics.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Program Name: M.Sc. in Mathematics

Eligibility Criteria for Admission:

Bachelor degree in Science with Mathematics /Statistics with a minimum 55% marks or equivalent grade in aggregate for General/EWS Category and 50% or equivalent grade in aggregate for SC/ST/OBC (non-creamy layer)/ PWD. The student should have studied Mathematics in all the three years.

About the Program

The Department has started offering a M.Sc. in Mathematics from the year 2017. Typically, this program is designed for students who have already completed a bachelor's degree in mathematics or a related field and wish to deepen their understanding of mathematical theory and its applications. The program offers rigorous coursework ensuring a strong foundational base and at least few advanced courses. The program curriculum would undergo periodic reviews, upgrades and changes, bearing in mind the rapid change in industry and R&D demands.

Students in a M.Sc. Mathematics program often have the opportunity to specialize in a particular area of mathematics based on their interests and career goals. They may also engage in research projects under the supervision of faculty members, leading to a thesis or dissertation. Graduates with a M.Sc. in Mathematics have a wide range of career options available to them. They may pursue academic careers as researchers or professors, work in industry as data scientists, analysts, or actuaries, or find employment in government agencies or research institutions. Additionally, the problem-solving and analytical skills developed during the program are highly valued in fields such as finance, engineering, computer science, and cryptography.

Page.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Name of the Department: Mathematics Name of the School: Natural Sciences Programme Name: M.Sc. in Mathematics

Course Structure Details

Programme Name	:	M.Sc. in Mathematics
Programme Objective	•••	Program Objectives (POs): Program Objectives (PEOs) for a
(POs)		M.Sc. in Mathematics outline the expected accomplishments and
		career aspirations of graduates of the program. These objectives
		serve as benchmarks for evaluating the effectiveness of the
		program in preparing students for their professional roles and
		future endeavours. Some potential Program Educational
		Objectives for a M.Sc. in Mathematics:
		4 PO 1: Advanced Knowledge: Post Graduates will
		demonstrate advanced knowledge and understanding of core
		mathematical concepts, theories, and techniques across
		various mathematical disciplines, including calculus, algebra,
		analysis, and applied mathematics.
		PO 2: Problem-Solving Skills: Post Graduates will possess
		strong problem-solving skills and the ability to apply
		mathematical principles to solve complex real-world
		problems in diverse fields, including science, engineering,
		finance, and technology.
		4 PO 3: Research and Innovation: Post Graduates will be
		equipped with the skills necessary to conduct independent
		research, including formulating research questions, designing
		experiments, analyzing data, and interpreting results. They
		will contribute to the advancement of knowledge in
		mathematics through scholarly publications and
		presentations.
		4 PO 4: Critical Thinking and Analysis: Post Graduates will
		demonstrate critical thinking skills and the ability to analyze
		and evaluate mathematical arguments, proofs, and models.
		They will apply logical reasoning and mathematical rigor to
		assess the validity and implications of mathematical results.
		4 PO 5: Communication Skills: Post Graduates will
		effectively communicate mathematical concepts, ideas, and
		results to both technical and non-technical audiences through
		written reports, oral presentations, and visualizations. They
		will collaborate with interdisciplinary teams and contribute to
		interdisciplinary research projects.
		1 5 1 5
Programme outcome	:	4 PO 1: Advanced Mathematical Knowledge: Post Graduates
- C		should demonstrate a deep understanding of fundamental
		mathematical concepts, theories, and techniques across
		various branches of mathematics.
		4 PO 2: Problem-Solving Proficiency: Post Graduates will be
		proficient in analyzing complex problems, formulating

 $_{Page}4$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	 mathematical models, and applying appropriate mathematical methods and algorithms to solve them effectively. PO 3: Mathematical Reasoning and Rigor: Post Graduates should possess strong critical thinking skills and logical reasoning abilities, enabling them to construct sound arguments, evaluate mathematical statements, and justify mathematical assertions rigorously. PO 4: Research Skills: Post Graduates should be able to conduct independent research, including formulating research questions, designing experiments or investigations, collecting and analyzing data, and drawing meaningful conclusions.
Programme Specific Outcome (SPOs)	 Program Specific Outcomes (PSOs) for a M.Sc. in Mathematics specify the specific knowledge, skills, and attributes that graduates of the program should possess upon completion. These outcomes provide a more detailed framework for assessing the attainment of the program's educational objectives. Here are some potential Program Specific Outcomes for a M.Sc. in Mathematics: PSO 1: Advanced Mathematical Knowledge: Post Graduates will demonstrate a deep understanding of advanced mathematical concepts, theories, and methodologies across various subfields of mathematics, including but not limited to calculus, algebra, analysis, geometry, and discrete mathematics. PSO 2: Mathematical Modelling and Problem-Solving: Post Graduates will be proficient in formulating mathematical models to represent real-world problems, analyzing these models using appropriate mathematical techniques, and deriving solutions that address the underlying issues effectively. PSO 3: Advanced Analytical Skills: Post Graduates will possess advanced analytical skills, including the ability to analyze complex mathematical structures, proofs, and algorithms. They will be able to critically evaluate mathematical arguments and identify logical flaws or inconsistencies. PSO 4: Computational Proficiency: Post Graduates will be proficient in using computational tools and software packages for mathematical analysis, simulation, and visualization. They will be able to apply programming languages such as MATLAB, Python, or R to solve mathematical problems and implement algorithms. PSO 5: Research Methodologies: Post Graduates will be familiar with research methodologies in mathematics, including literature review, hypothesis formulation, experimental design, data collection, statistical analysis, and interpretation of results. They will be able to conduct independent research and contribute to the advancement of

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	knowledge in their a	rea of specialization.	
	Semester-I		
Course Code	Title of the Course	Course Type	Credit
		~ .	
MMA 111020	Differential Equations	Compulsory	4
MMA 111031	Mathematical Analysis	Compulsory	4
MMA 111050	Fundamentals of Computers and C	Compulsory	4
	Programming		
MMA 111060	Numerical Analysis	Compulsory	4
MMA 111070	Linear Algebra	Compulsory	4
	Semester-II		
Course Code	Title of the Course	Course Type	Credit
MMA 121050	Statistics – I	Compulsory	4
MMA 121060	Complex Analysis	Compulsory	4
MMA121070	Measure Theory and Integration	Compulsory	4
MMA 121080	Topology	Compulsory	4
MMA 121090	Abstract Algebra	Compulsory	4
	Semester-III		
MMA 211010	Functional Analysis		
MMA 211030	Calculus of Variations and Integral	Compulsory	4
	Equations		
MMA 211040	Partial Differential Equations	Compulsory	4
	Elective – I	Elective	4
	Elective – II	Elective	4
MMA 213060	Seminar	Compulsory	2
	Semester-IV	± v	
MMA 221040	Optimization Techniques	Compulsory	4
MMA 221050	Number Theory	Compulsory	4
	Elective – III	Elective	4
MMA 223030	Project	Compulsory	6

	List of Electives for 3 rd Semester											
S1.	Course Code	Course Title										
No.			L	Т	Р							
1	MMA 215040	Theory of Computations	3	1	0	4						
2	MMA 215060	Field Theory	3	1	0	4						
3	MMA 215070	Statistics-II	3	1	0	4						
4	MMA 215080	Discrete Mathematics	3	1	0	4						
5	MMA 215090	Fluid Dynamics	3	1	0	4						
6	MMA 215100	Theory and Applications of Fuzzy sets	3	1	0	4						
7	MMA 215110	Data Structures and Algorithm Analysis	3	0	1	4						
8	MMA 215120	Cryptography	3	1	0	4						
9	MMA 215130	Java Programming	3	0	1	4						
10	MMA 215140	Graph Theory	3	1	0	4						

 $P_{age}6$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

12	MMA 215150	3	1	0	4	
13	MMA215160	Integral Transforms	3	1	0	4
14	MMA215170	Numerical Optimization Techniques	3	1	0	4
15	MMA215180	Introduction to Fuzzy Set Theory, Arithmetic and Logic	MOC	DCS		4
16	MMA215190	Introduction to Methods of Applied Mathematics	MOC	DCS		4
17	MMA215200	Introduction to Probability Theory and Statistics	MOC	OCS		4
18	MMA215210	Foundations of R software	MOC	DCS		4
19	MMA215220	Rings and Modules	MOC	CS		4
20	MMA215230	Essential Mathematics for Machine Learning	MOC	DCS		4
List of	electives for 4 ^t	^h Semester				
Sl.	Course Code	Course Title				CR
No.			т	Т	D	
1	MMA 226050	Artificial Intelligence and Hybrid Systems	3	1	0	4
2	MMA 226050	Algebraic Number Theory	3	1	0	4
3	MMA 226070	Statistics III	3	1	0	4
4	MMA 226080	Difference Equations and Discrete Dynamic	3	1	0	4
		Systems	5	-	Ŭ	
5	MMA 226090	Coding Theory	3	1	0	4
6	MMA 226100	Operator Theory	3	1	0	4
7	MMA 226110	Operating Systems	3	1	0	4
8	MMA 226120	Relational Database Management Systems	3	1	0	4
9	MMA 226130	Classical Mechanics	3	0	1	4
10	MMA226140	Tensor Algebra	3	0	1	4
11	MMA226150	Differential Manifold				
12	MMA 226160	A Primer to Mathematical Optimization	MOC	DCS		4
13	MMA 226170	Introduction to Database System	MOC	OCS		4
14	MMA 226180	Applied Linear Algebra in AI and ML	MOC	DCS		4
15	MMA 226190	Computational Mathematics with SageMath	MOC	OCS		4
16	MMA 226200	Dynamical System and Control	MOC		4	
17	MMA 226210	226210 Essentials of Data Science With R Software - 1: MOOCS Probability and Statistical Inference MOOCS				4
18	MMA 226220	Data Analytics with Python MOOCS				

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

DETAILED SYLLABUS

Course Code	Course Title	Course Type		Coi	ntact I	Hour	S		Credit
MMA 111020	Differential	Compulsory	L	3	Т	1	Р	0	4
	Equations	1 2							
Pre-requisite	:					•		•	
Course Assessn	nent Methods	As per CUJ norr	ns (60 n	narks	from	end	seme	ster ar	nd 40 marks
:	from sessional examinations)								
Syllabus	02								
Version :	Version :								
Course Object	ive: Most "real	l life" systems that	t are dese	cribed	math	nema	tically	be th	ey physical,
biological, finar	ncial or econon	nic, are described b	by means	of di	fferen	tial	equati	ons. C	Our ability to
predict the way	in which thes	e systems evolve o	or behave	e is de	etermi	ined	by ou	ır abil	ity to model
these systems a	nd find solution	ons of the equation	is explici	tly or	appro	oxim	ately.	Every	application
and differential	equation prese	ent its own challen	iges, but	there	are v	ariou	is clas	sses of	f differential
equations, and f	or some of thes	se there are establis	hed appr	oache	s and	meth	ods fo	or solv	ring them.
Course Outcon	nes:								
Understa	and that physica	al systems can be d	escribed	by dif	ferent	tial e	quatic	ons	
Understa	and the practica	l importance of sol	lving diff	erenti	al equ	atio	15		
Understa	and the different	nces between initia	l value a	nd bo	undar	ry va	lue pi	oblem	ns (IVPs and
BVPs)									
Apprecia	ate the importan	nce of establishing	the existent	ence a	nd un	ique	ness c	f solu	tions
Recogniz	ze an appropria	te solution method	l for a giv	en pro	oblem	l			
Classify	differential equ	ations							
Analytic	ally solve a wi	de range of ordinar	y differei	ntial e	quatic	ons (ODEs)	
Obtain a	pproximate sol	utions of ODEs usi	ing graph	ical a	nd nu	meri	cal tec	hniqu	es
• Use Fou	rier analysis in	differential equation	on solutio	n met	hods				
Solve cl	assical linear	partial differential	equatior	ns (PI	DEs).	Solv	ve dif	ferenti	al equations
using co	mputer softwar	re	-	,	,				
Unit – 1 E	xistence and u	niqueness of solut	tion to fi	rst or	der oi	rdina	ry dif	ferent	ial equation,
P	icard's iteration	n. Systems of first of	order diff	erenti	al equ	ation	ns, Tri	al solı	tion method
fc	or a linear syste	m with constant co	efficients	s and]	Eigen	valu	e tech	nique	
Unit – 2 Si	multaneous diff	ferential equations.	Total (or	· Pfaff	ian) d	iffer	ential	equati	ons.
Or	thogonal funct	ions. Equations wit	th regulat	r sing	ular p	oints	, pow	er seri	es solutions,
Fre	obenius metho	od. Bessel's Equ	ation, L	egend	re e	quati	on, I	Hermit	te equation,
La	guerre equation	n, Hypergeometric	equation						
Unit – 3 St	turm–Liouville	problems and e	igenfunct	tion e	expan	sions	s: The	e Stur	m–Liouville
pi	roblem, Inner p	product spaces and	orthonor	mal s	ystem	s, ba	sic pr	operti	es of Sturm-
L	iouville eige	nfunctions and	eigenva	alues,	No	onho	moger	neous	equations,
N	onhomogeneou	is boundary condit	ions, Gre	en's fi	inctio	ns.			
Unit – 4 E	lements of Fo	urier analysis: The	e Fourie	r serie	es of	a fi	inctio	n, con	vergence of
F	ourier series, F	Fourier Integral, Fo	urier tran	sform	and t	heir	conve	rgence	.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Text Books

- 1. M. Braun: Differential Equations and Their Applications, 4th edition, Springer, 1992.
- 2. S. Padhy and J. Sinha Roy: A Course in Ordinary and Partial Differential Equations, 4th edition, Kalyani, 2014.
- 3. W. E. Boyce and R. C. DiPrima: Elementary Differential Equation, 12th edition, Wiley, 2021.
- 4. C. H. Edwards and D. E. Penney: Elementary Differential Equations with Boundary Value Problems, 6th edition, Pearson, 2014.
- 5. J.R. Hanna and J.H. Rowland: Fourier series, Transforms, and Boundary Value Problems, 2nd Edition, Dover, 2008.
- 6. J.W. Brown and R.V. Churchill: Fourier Series and Boundary Value Problems, 8th edition, McGraw Hill, 2011.
- 7. A. Vretblad: Fourier Analysis and its Applications, Springer, 2010.

E.A. Coddington, An Introduction to Ordinary Differential Equations, Dover, 1989

Reference Books:

 P_{age}

Course Code	Course Title	Course Type		Cor	ntact F	Hour	s		Credit
MMA 111031	Mathematical	Compulsory	L	3	T	1	Р	0	4
101101111051	Analysis	computiony	Ľ	5	1	1	1	v	1
Pre-requisite	:								
Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40						and 40			
		marks from session	onal exar	ninati	ons)				
Syllabus	02								
Version :									
Course Objective: This course aims to provide students with the specialist knowledge necessary for basic concepts in Real Analysis. More precisely, students may learn basic concepts of convergence (pointwise and uniform) of a sequence of functions; students fist their idea towards the basic concepts of derivatives and Taylor series of functions of several variables. Furthermore, the course includes the Weierstrass approximation theorem, metric spaces (complete and compact), and Banach contraction principle to help students in the proof of the following Picard theorem, the inverse function theorem, and the implicit function theorem.									
theorem, and Arzela-Ascoli theorem.									
Course Outcon	Course Outcomes: After completion of this course students								
• Recognize the contribution and impacts of mathematical analysis in different areas of									

- Recognize the contribution and impacts of mathematical analysis in different areas of mathematics and identify the steps required to carry out research on a topic within mathematical analysis.
- Will understand the limits of this course. Particularly the theories and concepts used in the mathematical analysis namely uniform convergence of sequences and series of functions, equicontinuity
- May identify whether a given several variables functions are differentiable or not, if so find its derivative.
- May use the Jacobian matrix and Hessian matrix of function to construct the Taylor

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- series May use the Inverse function theorem to compute the derivative of the inverse function May construct complete/ compact metric space from many different kinds of metric. Unit – 1 **Uniform Convergence:** Uniform Convergence of sequence of functions- pointwise versus uniform convergence for a function defined on an interval of \mathbb{R} , Integration of a limit of a sequence of functions. The Weierstrass' approximation theorem. Periodic functions. Functions of Several Variables: Unit - 2Derivative of a function from an open subset of Rn into Rm as a linear transformation. Chain rule. Partial derivatives. Taylor's theorem. Inverse function theorem. Implicit function theorem, Jacobians. **Metric Spaces:** Unit -3Review of compact metric spaces, Banach's contraction principle, and its use in the proofs of Picard's theorem, inverse function theorem; implicit function theorems. Baire category theorem and some of its applications in the analysis of C(X) as a complete metric space when X is a compact metric space. Stone-Weierstrass theorem and Arzela-Ascoli theorem ... Text Books 1. N.L. Carothers: Real Analysis, Cambridge University Press, 2000. 2. G. F. Simmons: Introduction to Topology and Modern Analysis, Tata McGraw-Hill, 2004. 3. P. K. Jain and V. P. Gupta: Lebesgue Measure and Integration, New Age International 4. (P) Ltd., 2000.
 - 5. G. De. Barra: Introduction to Measure Theory, New Age International (P) Ltd., 2000.

H. L. Royden and P. Fitzpatrick: Real Analysis, 4th edition, PHI, 2010, Dover, 1989

Reference Books:

Course Code	Course Title	Course Type	Contact Hours Cre						Credit		
MMA111050	Fundamentals	Compulsory	L	3	Т	0	Р	1	4		
	of										
	Computer and										
	C										
	Programming										
Pre-requisite	:										
Course Assessr	nent Methods :	As per CUJ norr	ns (60 i	marks	from	n enc	l sem	ester	and 40		
		marks from session	onal exa	minat	ions)						
Syllabus	02										
Version :											
Course Objective: The main aim of this course is to develop programming skills using the											
fundamentals of	of C language and	learn problem-sol	ving tec	hniau	fundamentals of C language and learn problem-solving techniques. The course also includes						

fundamentals of C language and learn problem-solving techniques. The course also includes the advantages of user-defined data type which provides flexibility for application development.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

• Cour	rse Outcome: After completion of this course students will demonstrate basic									
know	knowledge in fundamentals of programming, algorithms and programming									
techn	technologies, and fundamentals of Computer Science. Students also will demonstrate									
know	ledge of fundamentals of hardware technology relevant to understanding									
Com	puter Science basics. Furthermore, they will be able to demonstrate the ability to									
desig	n creative solutions to real-life problems faced by the industry									
Unit – 1	Introduction to computers, generations of computer, processors, memory									
	hierarchy and I/O devices, System and application software, generation of									
	languages, compiler, interpreter, assembler, Number systems, computer									
	arithmetic. Flow Charting, Sequential, Branching & amp; Iterative.									
Unit – 2	Introduction to 'C' as Programming Language, An overview of a 'C'									
	programme, 'C' character set, 'C' tokens, 'C' keywords, Data Types (Primary,									
	derived & amp; user-defined), Storage classes, symbolic constants, operators									
	(arithmetic, logical & amp; relational), Flow of control (if-else, switch-case;									
	while, do-while & amp; for-loops). Functions (UDF, String Functions,									
	Mathematical functions).									
Unit – 3	Recursion, pointers, array (2-D & amp; 3-D), Strings, pre-processor directives,									
	structures, linked list file handling. C-lab: Execution of a simple programme,									
	Conditional & amp; Un-conditional Branching, Loops, Functions (Interactive									
	& Recursive), Arrays (2-D & 3-D), Structures, Linked Lists, File I/O.									
Text Books										

- 1. B.W. Kernighan, D.M. Ritchie: The C Programming Language, 2nd edition, Pearson Education India, 2015.
- Y.P. Kanetkar: Let us C, 15th edition, BPB Publications, 2016.
 E. Balagurusamy: Programming in ANSI C, 8th edition, Tata McGraw Hill, 2019.

Reference Books:

Course Code	Course Title	Course Type		Cor	ntact I	Hour	S		Credit
MMA111060	Numerical	Compulsory	L	3	Т	1	Р	0	4
	Analysis								
Pre-requisite	:								
Course Assessn	nent Methods :	As per CUJ norr	ns (60 r	narks	from	enc	l sem	ester	and 40
		marks from session	onal exar	ninati	ons)				
Syllabus	02								
Version :									
Course Object	tive: This course	covers the mathe	matical a	and c	ompu	tatio	nal fo	undat	ions of
the numerical	approximation a	and solution of s	cientific	prob	lems;	sin	nple (optim	ization;
polynomial and	d spline interpol	lation; pattern rec	ognition	; inte	gratic	on a	nd di	fferen	tiation;
solution of larg	e-scale systems o	of linear and nonlin	ear equa	tions	mod	eling	g and	solutio	on with
sparse equations; Numerical Eigenvalue problem, explicit schemes to solve ordinary									
differential equations and partial differential equations.									
Course Outcon	ne:								

Page 11

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- Demonstrate an understanding of common numerical methods and how they are used to obtain approximate solutions to mathematical problems.
- Apply numerical methods to obtain approximate solutions to mathematical problems.
- Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
- Analyse and evaluate the accuracy of common numerical methods.
- Implement numerical methods in Matlab. Write efficient, well-documented Matlab code and present numerical results in an informative way.

Unit – 1	Nature of numerical computations: errors and their propagation, convergence and stability of numerical algorithms: efficiency and arithmetic, complexity.
	Interpolation Theory: Hermite Interpolation, the general Hermite
	interpolation, Spline interpolation problem.
	Approximation of functions: The Minimax and Least squares approximation
	problem. Orthogonal polynomials, The Least squares approximation problem
	using orthogonal polynomials. Minimax and Near-minimax approximations.
Unit – 2	Numerical Integration: Gaussian Quadrature. Asymptotic error formulas and
	their applications. Automatic numerical integration. Multiple Integrals, Singular
	integrals, Numerical Differentiations.
Unit – 3	Numerical Solution of Ordinary differential equations: Numerical solutions
	of IVP – Difference equations, stability, error and convergence analysis. Single
	step methods - laylor series method, Euler method, Picard's method of
	Successive approximation, Runge-Kutta method. Multi step methods –
	Predictor-Corrector (PC) method, Euler PC method, Minne and Adams Moulton
	of RVP - Linear RVP finite difference methods shooting methods stability
	error and convergence analysis nonlinear BVP higher order BVP
	Numerical Solution of Partial Differential Equations. – Initial/boundary
	value problems for parabolic and hyperbolic PDEs (one space and one time
	dimension). – Explicit finite-difference schemes. Implicit finite-difference
	schemes.
Unit – 4	Numerical solution of systems of linear equations: Quick review of direct
	methods for solving linear systems, error analysis. The residual correction
	method. Iteration methods, Error prediction and Acceleration.
	The Matrix Eigenvalue problem: Review of Eigenvalue location, error, and
	stability results, Power method. Orthogonal transformations using Householder
	matrices. The eigenvalues of a symmetric Tridiagonal matrix. QR method. The
	calculation of Eigenvectors and Inverse iteration.
Text Books	
1. K. At	kinson: An Introduction to Numerical Analysis, 2 nd edition, Wiley, 2008.
2. R.L.	Burden and J.D. Faires: Numerical analysis, 8th edition, Brooks Cole, 2012.
3. P.J. D	Davis: Interpolation and Approximation, Dover, 2014.
4. J.M.	Ortega: Numerical Analysis: A Second Course, SIAM, 1987.
5. S.S.	Sastry: Introductory Methods of Numerical Analysis, 5 th edition, Phi Learning,
2012	

6. S.D. Conte and C. de Boor: Elementary Numerical Analysis: An Algorithmic

Page J

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Approach, SIAM, 2018.

Reference Books:

MMA 111070Linear AlgebraCompulsoryL3T1P04Pre-requisite:Course Assessment Methods :As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations)Syllabus Version :02Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have comustational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties.Course Outcome:After completion of course :The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of fifterent vector spaces and subspaces. The students will learn how to find the dusterminant of a matrix and how to use the properties of determinants. They will be able to determine whether a linear transformation wr.t. given basis. They will be able to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner product sca be used to define orthogonal vectors. The students will learn to use the Gram- Schmidt process to generate an orthonormal set of vectors. The students will learn to understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. The students wi	Course Code	Course Title	Course Type		Cor	ntact I	Hour	S		Credit
Algebra Image: Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations) Syllabus 02 Version : Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties. Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of a niner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.	MMA 111070	Linear	Compulsory	L	3	Т	1	Р	0	4
Pre-requisite : Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations) Syllabus Version : 02 Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties. Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner product space in a general setting and how the notion of inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit - 1 A Quick review of matrices: Algebra of matrices, determinants, rank an nullity of		Algebra								
Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations) Syllabus 02 Version : Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties. Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, base, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. The yuill be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit - 1	Pre-requisite	:								
Syllabus Q2 Version : Q Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties. Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will understand the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of numer products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit - 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, eigenvalues and eigenvectors of matrices, eigenvalues and eigenvectors of matrices, eigenvalues and eige	Course Assess	nent Methods :	As per CUJ nor	ms (60 i	marks	from	enc	l sem	ester	and 40
Syllabus 02 Version : 0 Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties. Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors			marks from session	onal exa	ninati	ions)				
Version : Image: Course Objective: This course teaches us, how Linear Algebra is universal in Mathematics and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties. Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit - 1 A fuer teries of matrices, he system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.<	Syllabus	02								
Course Objective: This course teaches us, how Linear Algebra is universal in Mathematicsand therefore a strong foundation has to be laid in studying the abstract algebraic conceptsintertivining geometric ideas. The fundamental notions of vector spaces viz lineardependence, basis and dimension and linear transformations. Students must havecomputational techniques and algebraic skill for the study of linear transformation. Thiscourse also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinearforms, quadratic forms and their geometric properties.Course Outcome:After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices,	Version :									
and therefore a strong foundation has to be laid in studying the abstract algebraic concepts intertwining geometric ideas. The fundamental notions of vector spaces viz linear dependence, basis and dimension and linear transformations. Students must have computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties.Course Outcome: After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram- Schnidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit – 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit – 2Finite dimensional vector spaces over a field: Linear s	Course Objec	tive: This course	teaches us, how L	inear Al	gebra	is un	ivers	sal in	Math	ematics
intertwininggeometricideas. Thefundamentalnotionsofvectorspacesvizlineardependence,basisandandalgebraicskillforthestudy oflineartransformations. Studentsmusthavecomputationaltechniquesandalgebraicskillforthestudy oflineartransformation.Thiscoursealgebraicalgebraicsigenvalues, eigenvalues, eigenvectors, diagonalization, bilinearforms, quadratic forms and their geometric properties.CourseOutcome:Aftercompletionofcourse :numersion <t< td=""><td>and therefore a</td><td>a strong foundation</td><td>on has to be laid in</td><td>n studyi</td><td>ng the</td><td>e absti</td><td>ract</td><td>algeb</td><td>raic c</td><td>oncepts</td></t<>	and therefore a	a strong foundation	on has to be laid in	n studyi	ng the	e absti	ract	algeb	raic c	oncepts
dependence,basisanddimensionandlineartransformations.Studentsmusthavecomputationaltechniquesand algebraicskillfor the study oflineartransformation.Thiscourse also coversinner product space, eigenvalues, eigenvectors, diagonalization, bilinearforms, quadratic forms and their geometric properties.Course Outcome:After completion of course :The students will understand the ideas of vector spaces,subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensionsof different vector spaces and subspaces. The students will learn how to find the null space,range space, and matrix representation of a linear transformation w.r.t. given basis. They willbe able to determine whether a linear transformation is one-to-one and onto.The students will learn how to see the properties of determinants tofind the determinant of a matrix and how to use the properties of determinants tofind the determinant in simple ways. The students will learn to use eigenvectors andunderstudent will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn aboutnormal, self-adjoint, and unitary operators and their properties.Unit -1A Quick review of matrices:Algebra of matrices, determinants, rank andnullity of matrices, the	intertwining g	geometric ideas.	The fundamenta	l notior	ns of	vect	or	spaces	s viz	linear
computational techniques and algebraic skill for the study of linear transformation. This course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties.Course Outcome:After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram- Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix represe	dependence, l	pasis and dime	nsion and linear	transfo	ormati	ons.	Stu	dents	mus	t have
course also covers inner product space, eigenvalues, eigenvectors, diagonalization, bilinear forms, quadratic forms and their geometric properties.Course Outcome:After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram- Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	computational	techniques and	algebraic skill for	the stu	dy of	linea	r tra	insfor	matio	n. This
torms, quadratic forms and their geometric properties.Course Outcome:After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear transformation.	course also cov	vers inner produ	ict space, eigenval	ues, eige	envect	ors, d	iago	nalıza	tion,	bilinear
After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators to canonical forms: diagonal,	forms, quadrati	ic forms and their	geometric properti	es.						
 After completion of course : The students will understand the ideas of vector spaces, subspaces, Linearly dependent and independent sets in a vector space, bases, and dimensions of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, eigenvalues and eigenvectors, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a lin	Course Outco	me:					1	C		
of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram- Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	After complet	tion of course :	The students will	l unders	stand	the 10	deas	of v	ector	spaces,
of different vector spaces and subspaces. The students will learn how to find the null space, range space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram- Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear operator, Cayley- Hamilton theorem, transformation of a linear operators to canonical forms: diagonal,	subspaces, Lin	early dependent a	ind independent set	ts in a ve	ector s	space,	base	es, an	d dim	ensions
 Tange space, and matrix representation of a linear transformation w.r.t. given basis. They will be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	of different veo	ctor spaces and su	ubspaces. The stud	ents will	l learn	1 how	to f	ind th	e nul	l space,
 be able to determine whether a linear transformation is one-to-one and onto. The students will learn to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	range space, ar	a matrix represer	itation of a linear	transform	nation	W.r.t.	give	en bas	51S. 11 The	ney will
 with team to find the determinant of a matrix and how to use the properties of determinants to find the determinant of a matrix and how to use the properties of determinants to find the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	be able to dete	ermine whether a	t of a matrix and h	10n 15 0	ne-to-	one a	na c	onto.	ine s	students
 Ind the determinant in simple ways. The students will learn to use eigenvectors and eigenspaces to determine the diagonalizability of a linear transformation. The students will understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	find the deter	nu lile determinali	t of a matrix and m	ow to us		prope	nues	oide		iallis io
 Unit - 2 Unit - 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. 	aigonspaces to	dotormino tho di	e ways. The stud	ellis wi	trongt	forma	tion	The	studo	nto will
 understand the notion of an inner product space in a general setting and now the notion of inner products can be used to define orthogonal vectors. They will be able to use the Gram-Schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	understand the	notion of an inn	er product space i	a iiiicai n a gene	tral se	ottina	and	how	stuue the no	ntion of
 Schmidt process to generate an orthonormal set of vectors. They will be able to use the ortant-schmidt process to generate an orthonormal set of vectors. The students will learn about normal, self-adjoint, and unitary operators and their properties. Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	inner products	can be used to de	efine orthogonal ve	ectors T	hev u	vill be	anu ahla	now • to u	se the	Gram-
Definite the orthonormal set of vectors. The statents will learn about normal, self-adjoint, and unitary operators and their properties.Unit - 1A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices.Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	Schmidt proce	ss to generate an	orthonormal set	of vecto	ncy w rs T	he str	ident	s wil	l lear	n about
 Unit – 1 A Quick review of matrices: Algebra of matrices, determinants, rank and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	normal self-ad	ioint and unitary	operators and their	r nronert	ies		uem	.5 **11	i icui	li uoout
 If Quick Fortex of Induces Angeora of Induces, determinants, failt and nullity of matrices, the system of linear equations, Symmetric, orthogonal and other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit - 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	Unit -1 A	Ouick review	of matrices: Algo	bra of	matri	ces d	leter	ninar	its ra	nk and
 other special types of matrices, eigenvalues and eigenvectors of matrices, minimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit - 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 		illity of matrices	the system of lin	ear equa	tions	Svm [*]	metr	ic or	thogo	nal and
 winimal and char. polynomial of a matrix, similar matrices, diagonalizable matrices. Unit - 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal, 	ot	her special type	s of matrices eig	envalue	s and	l eige	enve	ctors	of m	atrices
Unit - 2Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and 	m	inimal and char	polynomial of a	matrix	simi	lar m	atric	es d	iagon	alizable
Unit – 2 Finite dimensional vector spaces over a field: Linear span, linear dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley-Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	m	atrices.	polynomia or a	,	011111			•••, ••		
dependence, and independence, basis, and dimension. Linear transformation and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	Unit – 2	Finite dimensio	nal vector space	es over	a	field:	Li	near	span.	linear
and rank-nullity theorem. Matrix representation of a linear transformation. Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,		lependence, and	independence, bas	is, and	dimer	nsion.	Lin	ear tr	ansfo	rmation
Matrix of Change of basis, algebra of linear operators, eigenvalues and eigenvectors, minimal and char. polynomial of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	2	and rank-nullity	theorem. Matrix r	represent	ation	of a	line	ar tra	nsfor	mation.
eigenvectors, minimal and char. polynomial of a linear operator, Cayley- Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	Ν	Matrix of Chang	e of basis, algeb	ra of li	inear	opera	tors.	eige	nvalu	es and
Hamilton theorem, transformation of linear operators to canonical forms: diagonal,	e	eigenvectors, min	imal and char. p	olynomi	al of	a lir	near	opera	ator, (Cayley-
diagonal,	H	Hamilton theorem	n, transformation	of linea	ar ope	erator	s to	cano	nical	forms:
	d	liagonal,	-		1					
triangular and Jordan forms.	tr	iangular and Jorda	an forms.							

 $_{\rm Page} 13$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 3	Inner product spaces, Orthogonality, Gram-Schmidt orthogonalization process,
	norms of vectors and matrices, mear functional, dual spaces, aujoint of an
	operator, normal, unitary, Hermitian and skew-Hermitian operators, Quadratic
	forms, reduction and classification of quadratic forms, Positive definite and
	negative definite matrices.

Text Books

- P. D. Lax: Linear Algebra and Its Applications, 2nd edition, Wiley, 2007.
 R. A. Horn and C.R. Johnson: Matrix Analysis, 2nd Edition, Cambridge University Press, 2012.
- K. Hoffman and R. Kunze: Linear Algebra, 2nd edition, Prentice Hall, 2015.
 P. R. Halmos: Finite-dimensional Vector Spaces, 2nd Edition, Dover, 2017.
- 5. C.D. Meyer: Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- 6. S.L. Campbell and C.D. Meyer: Generalized Inverses of Linear Transformations, SIAM, 2008.
- 7. J. Laub: Matrix Analysis for Scientists and Engineers, SIAM, 2004.
- 8. H. Anton and C. Torres: Elementary Linear Algebra, 11th Edition, Wiley India Edition 2016.
- 9. 7. V. Krishnamurthy, V.P Mainra and J.L Arora: An Introduction to Linear Algebra, East-West Press, New Delhi 2011.

Reference Books:

 $_{\rm Page}14$

Course Code	Course Title	Course Type		Cor	ntact	Hour	S		Credit
MMA121050	Statistics – I	Compulsory	L	3	Т	1	Р	0	4
Pre-requisite	:								
Course Assessr	nent Methods :	As per CUJ norr	ns (60 r	narks	fron	n enc	l sem	lester	and 40
	-	marks from session	onal exar	ninati	ons)				
Syllabus	02								
Version :									
Course Object	tive: The main	objective of this	course	is to	prov	vide	stude	nts w	vith the
foundations of	probabilistic and	d statistical analys	sis most	ly use	ed in	vari	ed ap	oplicat	tions in
engineering and	d science like dise	ease modeling, clin	nate pred	iction	and	comp	outer	netwo	rks etc.
Course Outco	me:							_	
At the end of	this course stude	ents will be able t	to under	stand	the	conce	ept o	f a sta	atistical
population and	l a sample from	a population. The	ey will	descri	be d	ata u	sing	locati	on and
variation meas	sures. They will	have a thorough	n unders	standi	ng o	f as	sociat	tion b	between
variables using	correlation and r	egression concepts.							
Unit - 1 In	troduction to P	robability: Concep	ot of Rai	ndom	Expe	erime	nt, S	ample	Space,
E	vent, Definitions	of Probability, Co	nditiona	l Prol	babili	ity, li	idepe	endent	events
an	d Mutually exclu	isive events. Addit	tion and	Mult	iplica	tion	Theo	rems,	Bayes
	neorem.		D .			a		0	
R	andom Variable	es and Probabilit	y Distr	ibutio	ons:	Conc	ept	ota	random
Va	riable, Discrete	and Continuous F	andom	Varia	bles,	Dist	ributi	on Fi	inction,
Pr	obability Mass a	and Density Function	ions, Ma	them	atical	Exp	ectat	10n, N	Aoment
G	enerating Functio	n, Characteristic F	unction,	Prob	abilit	y Ge	nerat	ing Fi	inction,

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	Discrete and Continuous Probability Distributions such as Bernoulli, Binomial, Negative Binomial, Geometric, Hyper-Geometric, Poisson, Multinomial, Uniform, Exponential, Beta, Gamma and Normal.
Unit – 2	Joint Probability Distributions: Introduction Joint Distribution for Two
	Dimensional Random Variables Marginal Distributions Conditional
	Distributions Covariance Conditional Expectation Independence of Random
	Variables Distribution of Sum of Two Independent Random Variables
	Sampling Distributions: Sampling Distribution based on Normal Random
	Variables, t- Distribution, Chi-Square Distribution, F- Distribution, Order
	Statistics and their Distributions, Bivariate Normal Distribution, Multivariate
	Normal Distribution.
Unit – 3	Correlation and Regression Analysis: Introduction, Types of Correlation,
	Karl Pearson's Coefficient of Correlation, Spearman's Rank Correlation,
	Multiple and Partial Correlation, Linear Regression Model, Regression
	Coefficient and its Properties, Computation of Regression Equation, Multiple
	Regression Analysis.
	Stochastic Process: Introduction, Poisson Process, Birth and Death Process,
	Markov Chain, Transition Probabilities, Classification of States, Stationary
	Process.
Text Books	
1. S.M.	Ross: Introduction to Probability and Statistics for Engineers and Scientists,
Acad	emic Press, 4 th Edition, 2010.
2. W.W.	Hines, D.C. Montgomery, D.M. Goldsman, and C.M. Borror: Probability and
Statis	stics in Engineering, John Wiley and Sons, 4 th Edition, 2007.
3. S.C. C	Supta and V.K. Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand
and S	Sons, 2007.
4. A.M.	Goon, M.K. Gupta, B. Dasgupta: Fundamental of Statistics, Vol. I, II, World
Press	, 2001.
5. V.K. I	Rohatgi and A.K. Ehsanes Saleh: An Introduction to Probability and Statistics,
John	Wiley and Sons, Inc. 2003.
6. G. Cas	sella and R.L. Berger: Statistical Inference, Cengage Learning, 3 rd Edition, 2008.
7. J. Med	hi: Stochastic Processes, New Age Publication, 2 nd Edition, 2002
Reference B	ooks:

Course Code	Course Title	Course Type	Contact Hours Cred						Credit
MMA121060	Complex	Compulsory	L	3	Т	1	Р	0	4
	Analysis								
Pre-requisite	:								
Course Assessm	nent Methods :	As per CUJ norms (60 marks from end semester and 40							
		marks from session	onal exai	ninati	ons)				
Syllabus	02								
Version :									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Objective:

To study the techniques of complex variables and functions together with their derivatives, Contour integration and transformations.

• To study complex power series, classification of singularities, calculus of residues and its application in the evaluation of integrals, and other concepts and properties

Course Outcome:

Upon completing the course, students will be able to:

• equipped with the understanding of the fundamental concepts of complex variable theory and skill of contour integration to evaluate complicated real integrals via residue calculus.

• Apply problem-solving using complex analysis techniques applied to diverse situations in physics, engineering and other mathematical contexts.

Unit – 1	Basic algebraic properties of complex numbers, Exponential form, Roots of complex numbers, European of a complex variable mappings. Cauchy-
	Riemann equations, sufficient conditions for differentiability. Analytic functions,
	Harmonic functions. Elementary functions: The exponential, logarithm
	functions, branches and derivatives of logarithms. Complex exponents,
	trigonometric, hyperbolic functions and their inverses.
Unit – 2	Integrals: Complex integrals, Upper bounds for moduli of contour integrals,
	Cauchy's theorem, Cauchy's integral formula, Liouvilles' theorem and
	fundamental theorem of algebra, maximum modulus principle.
Unit - 3	Series: Classification of singularities. Representations of holomorphic
	functions in terms of power series, Meromorphic functions, zeros and poles,
	theorem Basidue at infinity Basidue at pales. Evaluation of improper integrals
	and definite integrals using contour integration. Argument principle and
	Rouche's theorem
Unit – 4	Manning by Elementary functions: Linear transformations linear fractional
	transformations, other mappings by elementary functions. Conformal mapping:
	Preservation of angles, transformations of harmonic functions and boundary
	conditions. Applications of conformal mappings.
Text Boo	ks
1. R	L. V. Churchill and J. W. Brown: Complex Variables and Applications, 9 th edition,
N	AcGraw Hill, 2013.
2. L	Ahlfors: Complex Analysis: An Introduction to the Theory of Analytic Functions of C_{1}
	T Conserve Theory of European of a Complex Variable Oxford University Press
5. E	970.
4. J.	B. Conway: Functions of One Complex Variable, 2 nd edition, Narosa, 1995.
5. E	D. Sarason: Complex Function Theory, 2 nd edition, Hindustan Publishing Company,
2	008.
6. N	I.J. Ablowitz: Complex Variables Introduction and Applications, 2 nd edition,
C	Cambridge University Press, 2003.
7. S	. Ponnusamy and H. Silverman: Complex Variables with Applications, Birkh"auser,
2	006.
Reference	e Books:

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Code	Course Title	Course Type	Contact Hours						Credit
MMA 121070	Measure	Compulsory	L	3	Т	1	Р	0	4
	Theory and								
	Integration								
Pre-requisite	:	1							
Course Assessm	nent Methods :	As per CUJ nor	ms (60 i	marks	from	n enc	l sem	ester	and 40
~ !! !		marks from session	onal exai	ninat	ions)				
Syllabus	02								
Version :	• 171 *		• ,	1	1 1	1	41	1	4 6
Course Object	tive: The course 1	ntroduces the Lebe	sgue int	egral	and de	evelo	ps th	e elen	nents of
measure theory	y. We give the n	otions of special	set syste	ems, a	algebi	as o	I sets	5. Bor	el sets,
completion of	measure con	struction of Leb		ine al	lia III	easu	le, ež Stialti	AC m	
measurable fun	ctions and their n	properties simple fi	unctions	cons	tructio	on of	°I ehe	colle	integral
and its properti	ies absolute con	vergence of integra	al integr	able t	functio	ons	Lebes	some t	heorem
on dominated	convergence Le	besque-Stielties in	teoral (Conve	rgenc	e the	eorem	$s L^p$	spaces
convergence an	id it's application	s.	cogran, c		- 80110	• •			spaces,
Course Outcon	me: After compl	eted course, the stu	dents are	e expe	ected 1	to be	able	to:	
	1	,		1					
Describ	e basic properties	s of sigma-algebras	and the	Lebe	sgue i	ntegi	al		
Explain	the construction	of the Lebesgue m	easure of	n Euc	lidear	n spa	ce		
Describ	e the relationsh	ip between conti	nuous f	unctio	ons a	nd	genera	al int	egrable
function	ns Work with Leb	esgue-Stieltjes inte	gral on t	he rea	al line				C
• Determ	ine questions rela	ated to different ki	inds of c	conve	rgence	e, lik	te L^p -	conve	rgence,
converg	gence in measure	and convergence al	most ev	erywł	nere				-
Describ	e the main ideas	of the proofs for the	e Fubini	-and I	Radon	-Nik	odym	theor	rem.
Unit – 1 T	The Real Numbers	s: Sets, Sequences,	and Fun	ctions	5.				
Le	ebesgue measure	e on \mathbb{R}^n : Introdu	action, o	outer	meas	sure,	mea	surabl	e sets,
Le	ebesgue measure	e, regularity prope	erties, a	non	measu	irable	e set,	mea	surable
fu	nctions, Egoroff's	s theorem, Lusin's t	heorem						
Unit – 2 I	ebesgue integra	tion: Simple func	tions, I	Lebes	gue i	ntegr	al of	a b	ounded
f	unction over a set	t of finite measure,	bounded	d conv	verger	nce th	neorei	n, int	egral of
n	ionnegative funct	tions, Fatou's Lem	ma, mo	noton	e con	verg	ence	theore	em, the
g	eneral Lebesgue	integral Lebesgue	converg	gence	theore	em, o	chang	e of v	ariable
I	formula.								
	Differentiation and integration: Functions of bounded variations, differentiation								
Unit 2 U	an integral, abso p areasas. The M	futery continuity,	lity and	Hald	arla in		liter		atanaga
$\bigcup_{n=0}^{0$	$f I_p^p$ densations	$IIIKOWSKIS IIIEQUALresults in I^p \cdot E_c$	nty and	rieg	u s III Defin	ition	of F	ourier	CICHESS Corios
	ormulation of cor	vergence problem	I^2_{-} the	nus.	f Four	rier o	or f	conv	ergence
	f Fourier series	ivergence problems	, <i>L</i> - ше	.01 y 0	1 1 Oul	ICI S	CITES,	COILV	ergence
0	TTOUTION SCHES.								

 $_{\rm Page} 17$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Text Books

- 1. P. K. Jain and V. P. Gupta: Lebesgue Measure and Integration, 3rd Edition, New Age International (P) Ltd., 2019.
- 2. G. De. Barra: Introduction to Measure Theory, 2nd Edition, New Age International (P) Ltd., 2013.
- H. L. Royden, P. Fitzpatrick: Real Analysis, 4thedition, PHI, 2010.
 W. Rudin, Real and Complex Analysis, 3rd edition, McGraw Hill Education, 2023. G. B. Folland, Real Analysis, 2nd edition, Wiley,

Reference Books:

Course Code	Course Title	Course Type		Co	ntact	Hours	3		Credit
MMA121080	Topology	Compulsory	L	3	Т	1	Р	0	4
Pre-requisite	:								
Course Assessm	nent Methods :	As per CUJ norn	ns (60 r	narks	fror	n end	sem	ester	and 40
		marks from session	onal exar	ninati	ions)				
Syllabus	02								
Version :									
Course Object	tive: Real analysi	is is a prerequisite	course t	o unc	lersta	nd th	e bas	ic def	initions
of topological s	space. Topology i	s a very abstract m	athemati	cs di	scipli	ne, sc	thes	e topi	cs need
definitions, the	orems, and proofs	s in a very proper f	ormal wa	ıy. A	reade	er of t	is to	pic wi	ill learn
the basics of p	oint-set topology	and will be intro	duced to	o foll	ow-u	p top	ics su	ich as	s knots,
manifolds, dyna	amical systems, f	fixed points, and to	opologica	al gra	phs.	Furth	ermoi	re, the	reader
will learn how	results from topo	logy are used in ap	plication	s that	rang	ge froi	n the	atom	ic scale
in chemistry to	the astronomic so	cale in cosmology.							
Course Outcon	me: After succes	sful completion of	this cour	se:					
Students will u	understand the d	efinitions, and co	ncepts o	f ope	en ar	nd clo	sed	sets, i	nterior,
closure and bo	undary of a set.	Later students can	n create	new	topol	logica	l spa	ces by	y using
subspace, produ	uct, and quotient	topologies. Furthe	rmore, b	y usi	ng co	ontinu	ous f	unctio	ons and
homeomorphism	ms to understand	the structure of to	pologica	l spa	ces.	Stude	nts n	nay kr	now the
concepts of axi	ioms alongwith c	continuity in topolo	ogical sp	aces	and	later t	hey c	can re	lies the
difference betw	veen geometry a	nd topology. Stud	lents als	o car	n unc	lersta	nd th	e con	cept of
connected, con	npact topological	spaces and separ	ration of	axic	ms.	Finall	y the	ey car	ı apply
theoretical conc	cepts in topology	to understand real-	world ap	plica	tions				
Unit -1 To	pological Space	s: Introduction, o	pen set 1	topol	ogy,	Basis	Sub	basis,	closed
se	ts and closure,	Order Topology,	Product	Тор	olog	y, Su	bspac	e To	pology,
Qı	uotient Topology	, Metric Topology	, Contine	ous f	unctio	ons, I	Iome	omor	phisms,
O	pen and Closed M	laps							
Unit -2 Co	onnectedness an	d Compactness:	Connec	ted a	nd P	ath C	onne	cted	Spaces,
Co	omponents and I	Path Components,	Local (Conne	ected	ness,	Com	pact	Spaces,
	ocal compact space	es, Heine Borel Th	ieorem,	Tycho	noff	Theor	em	~	
Unit -3	countability and	Seperation Ax	ioms: (ount	abilit	у Ах	loms	, Sep	paration
A	xioms, Urysohn	Lemma, Urysohr	n Metriz	ation	The	orem,	Tiet	ze ex	tension
1	heorem								

 ${}^{\rm Page}18$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Text Books

- 1. J. R. Munkres: Topology, Prentice Hall of India, 2001.
- 2. J. Dugundji: Topology, Universal Book Stall, New Delhi, 1990.
- 3. G. F. Simmons: Introduction to Topology and Modern Analysis, Tata McGraw-Hill edition, 2004.
- 4. M. D. Crossley: Essential Topology, Springer International Edition, 2008.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours Cre						
MMA121090	Abstract	Compulsory	L	3	Т	1	Р	0	4
	Algebra								
Pre-requisite	:								
Course Assess	sment Methods :	As per CUJ norr	ms (60 r	narks	from	end	l sem	ester	and 40
		marks from session	onal exar	ninati	ions)				
Syllabus	02	2							
Version :									
Course Obje	ctive: This course	aims to provide a	a first ap	oproa	ch to	the s	subjec	et of a	algebra,
which is one of	of the basic pillars	of modern mathem	natics. T	he fo	cus of	the	this c	ourse	will be
the study of	certain structures	s called groups, r	rings, fie	elds,	modu	iles a	and s	some	related
structures. In	particular to study	y in detail the Sylo	ow theor	ems a	and po	olync	omials	s ring	s. This
course can he	lp to gain skills in	problem solving a	and critic	cal thi	inking	, At	ostrac	t alge	bra is a
classical field	that is associated w	with the study of po	olynomia	als in	severa	ıl var	iable	S.	
Course Outcome: After completion of the course:									
The student w	ill be able to define	e the concepts of g	roup, rin	ig, fie	ld, mo	odule	s, and	d will	be able
to readily giv	e examples of eac	ch of these kinds	of algeb	raic s	structu	ires.	Stude	ents a	lso can
define the co	oncepts of coset	and normal subgr	coup and	d pro	ve el	emer	ntary	prop	ositions
involving thes	se concepts. Furthe	ermore, define the	concept	t of s	ubgro	up ai	nd wi	ill be	able to
determine	\	1 1 1		1.	C				C
(prove or disp	rove), in specific e	xamples, whether a	a given s	ubset	ofag	group) 1S a s	subgro	sup of
the group. In	ey also work with	the concepts of h	lomomol	rphisr	n and	Ison	norph	11SM.	Finally,
the student wi	If be able to apply	the basic concepts	or neid t	ineory	, incli	Jaing	g neic	i exter	nsions
Unit 1	15. Trounge Quick rox	view of basis idea	a of Grou	un Tl	aaru	Sule		haara	ma and
OIIII - I	beir applications	Finitely generated a	s of Olo belian a	up 11	leory,	Sylu	wst	neore	ins and
Unit 2 I	Pings and ideals.	Ouick review in		tative	ring	n Ni	Iradia	val Ia	cobson
$\operatorname{Omt} = 2$	adical Extension	and Contraction			nd EI) P	inaci	of Er	actions
נ יר	Voetherian rings P	rimary	01 ⁻ D, 1	ID a		Э, К	ings	01 116	actions,
T	Decomposition	i iiiai y							
$I_{\text{IInit}} = 3$	Modules. Introduc	tion Submodules	and Or	otien	t mod	hules	Dir	ect si	im and
F	Product Finitely	generated module	s Exac	t sea	llence	ruies •s T	'ensor	nroc	fluct of
r	nodules Noetheria	n and Artinian mod	dules M	odule	s of F	ractie	ons	proc	1001 01
Text Books			<u></u>	0 4 4 1 2	0 01 1		0110		
Lene Bookb									

 $_{\rm Page}19$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- 1. M. Atiyah: Introduction to Commutative Algebra, Westview Press, 1994.
- 2. D.S. Dummit and R.M. Foote: Abstract Algebra, 3rd edition, Wiley, 2003.

3. O. Zariski and P. Samuel: Commutative Algebra I. Vol. 1, Springer, 1975.

4.P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul: Basic Abstract Algebra, 2nd edition, Cambridge, 1995

Reference Books:

SEMESTER III

Course Code	Course Title	Course Type		Cor	ntact I	Hour	S		Credit
MMA211010	Functional	Compulsory	L	3	Т	1	Р	0	4
D	Analysis								
Pre-requisite			(60	1	0		1		1 40
Course Assessn	Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40							and 40	
0.11.1	0.0	marks from sessional examinations)							
Syllabus Version	02	2							
Course Objec	tive: This cours	e aims to introduc	re stude	nts to	the	theo	rv of	Bana	ich and
Hilbert spaces	that is infinite-d	limensional vector	spaces e	equipr	bed w	ith a	norm	respe	ectively
inner product t	hat turns them in	to a complete met	tric space	e. and	l of th	ne or	oerato	rs (i.e	e. linear
maps) between	these spaces. Th	ese objects arise na	aturally i	in app	licatio	ons i	nclud	ing w	avelets,
signal processi	ng and quantum	mechanics, and u	underpin	the t	theory	of	partia	l diff	erential
equations. The	course will also i	ntroduce the most	importar	nt exa	mples	of H	Hilber	t and	Banach
spaces from the	e point of view of	applications.							
Course Outcon	me: By the end o	of this course stude	nts will b	be abl	e to:				
• Learn n	ormed linear spa	ces and basic prop	perties of	f Bana	ach sp	baces	B. Be	famili	ar with
basic ex	amples of compl	ete and incomplete	normed	linea	r spac	es.			
• Define	the concepts of	bounded linear f	unctiona	ıls an	d dua	al sp	aces,	and	discuss
extensio	ons of bounded lin	near functionals;	_	_					
• Define	the concepts of	inner product space	ces, dev	elop a	and u	se th	ne ba	sic th	eory of
Hilbert	spaces and or	thogonality, use	the Gra	ım-Sc	hmidt	pro	ocess	to j	produce
orthono	rmal sequences.			с II	•11 /			1	.1 · .
• State an	a prove the Ries	sz representation ti	neorem	IOP H	ilbert	spac	es an	a use	this to
define a	ind establish prop	berties of the adjoir	n operat	or, co	mpute	etne	adjoi	ntors	suitable
	Zorn'a Lomma	Ushn Donash	theorem	Do	flovin		maaa	- U	niform
• Lean	Zonn's Lennina,	nd its applications	Open	, Ke Mann	ing T	e : hear	space	S, U	III0IIII- Graph
Theorer	n	nd its applications	, open i	Mapp	ing i	ncor	ciii, C	10500	Graph
• Learn si	nectrum of a bou	nded linear operato	r Prove	and a	nnly t	he si	nectra	1 theo	rem for
compac	t self-adjoint one	erators and discuss	s how th	is the	orem	gen	eralis	es res	ults for
finite di	mensional matric	es.				8			
Unit – 1 Or	uick review of	metric spaces. No	ormed 1	inear	space	es: F	Finite	dime	ensional
no	ormed spaces, Ba	nach spaces, Heine	e-Borel t	theore	m, Ri	esz	lemm	a, Co	ntinuity
of	linear maps, Dua	al spaces and transp	oses						5
	•	· · · · · · · · · · · · · · · · · · ·							

 ${}^{\rm Page}20$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Unit – 2	Inner product spaces: Hilbert spaces, Orthonormal basis, Total Orthonormal Sets
	and Sequences Projection theorem and Riesz representation theorem.
	Representation of Functionals on Hilbert Spaces, Hilbert-Adjoint Operator, Self-
	Adjoint, Unitary and Normal Operators
Unit – 3	Zorn's Lemma, Hahn-Banach theorem, Reflexive Spaces, Uniform-
	boundedness principle and its applications, Open Mapping Theorem, Closed
	Graph Theorem.
	Spectrum of a bounded operator
Text Books	
1. E. Kr	eyszig: Introduction to Functional Analysis with Applications, Wiley, 2007.
2. J.B. C	Conway: A course in Functional Analysis, 2 nd edition, Springer, Berlin, 2007.
3. A.N.	Kolmogorov and S. Fomin: Elements of the theory of functions and functional
analy	sis, Dover, 1999.
	1 1 D L L (1 (C L (1 A 1 C OND 1)) 1000

4. A. Taylor and D. Lay: Introduction to Functional Analysis, 2nd edition, Wiley, 1980. Reference Books:

Course Code	Course Title	Course Type		Cor	ntact I	Hour	5		Credit
MMA 211030	Calculus of	Compulsory	L	3	Т	1	Р	0	4
	Variations								
	and Integral								
	Equations								
Pre-requisite	:								
Course Assessn	nent Methods :	As per CUJ norr	ns (60 i	marks	from	end	l sem	ester	and 40
		marks from session	onal exai	ninati	ons)				
Syllabus	02								
Version :									
Course Object	ive: This course	introduces the basi	c concep	ots of	Relati	onsh	ip be	tween	Linear
Differential ec	juations and V	olterra Integral H	Equation	s, Tl	ne M	[etho	d of	Suc	cessive
approximations	, Eulers Integrals	Beta and Gamma	Functior	is and	their	Elen	nentai	y Pro	perties,
Green's Functi	on, Euler's equa	ation-special cases	, The p	roble	m of	min	imum	i, sur	face of
revolution, Mi	inimum energy	problem-Brachist	ochrone	prob	olem.	Var	iation	al p	roblem,
Application of	Calculus of Var	iation-Hamilton's p	orinciple	-Lagr	ange's	s equ	ation	- Har	nilton's
equations.			-	U U	C	1			
Course	Outcome: Co	onceptual Underst	anding	of Re	elatio	nship	bet	ween	Linear
Differen	ntial equations	and Volterra Integ	gral Ĕq	uation	s, an	d so	olution	ns by	using
resolver	nt kernels.		-					2	Ũ
• Apply	Laplace Transfor	rmation to get the	solution	of Int	tegro-	Diffe	erenti	al Equ	lations.
Volterra Integral Equation of the First kind.							,		
Discuss	Eulers Integrals	Abel's problem It	erated K	ernel	S				
• Evaluat	e Characteristic	numbers and Eigen	function	ns and	its nr	oner	ties		
	• Evaluate Characteristic numbers and Eigen functions and its properties.								

- Evaluate Green's Function for Ordinary Differential Equations.
- Conceptual Understanding of functionals, strong and weak variations, Euler's Equation.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

• Exp	ain Brachistochrone problem. Variational problem, Isoperimetric problem.
• Ana	lyse Hamilton's principle-Lagrange's equation- Hamilton's equations.
Unit – 1	Calculus of Variations: Introduction, problem of brachistochrone, problem of
	geodesics, isoperimetric problem, Variation and its properties, functions and
	functionals, Comparison between the notion of extrema of a function and a
	functional.
Unit – 2	Variational problems with the fixed boundaries, Euler's equation, special cases
	containing only some of the variables. Invariance of the Euler-Lagrange
	Equation, Functionals Containing Higher-Order Derivatives, Euler- Poisson
	equation, Functionals Containing Several Dependent Variables, System of
	Euler's equation Functionals containing several independent variables
	Ostrogradsky equation Variational problems in parametric form applications to
	differential equations The Isoperimetric Problem and some of their
	generalizations Applications to Eigenvalue Problems Holonomic and
	Nonholonomic Constraints
Unit – 3	Variational problems with moving boundaries pencil of extremals
Onit 5	Transversality condition Extremals with corners refraction of extremals
	examples One-sided variations conditions for one sided variations Field of
	extremals central field of extremals. The Hamiltonian Formulation Jacobi's
	condition The Weierstrass function a weak extremum a strong extremum The
	Lagendra condition Conjugate Doints Variational methods for boundary value
	problems in ordinary and partial differential equations
I Init 1	Internal Equation of Internation and horiz examples Classification
OIIII - 4	Conversion of Volterro Equation to ODE Conversion of IVD and DVD to
	Laterral Equation Successive entrovination Successive substitution methods
	for Erathelm Integral Equations, successive substitution methods
	for Frednoim Integral Equations, series solution, successive approximation,
	successive substitution method for volterra integral Equations, volterra integral
	Equation of first kind, integral Equations with separable Kernel, Fredholm's
	first, second and third theorem, Integral Equations with symmetric kernel,
	Eigen functions expansion, Hilbert-Schmidt theorem, Fredholm and Volterra
T D 1	Integro-Differential equation, Singular Integral Equation.
Text Books	
1. B. Bru	nt: The Calculus of Variations, Springer-Verlag, New York, 2004.
2. F. Y. J	M. Wan: Introduction to the Calculus of Variations and its Applications, 2 nd
edition	, Chapman & Hall, 1995.
3. M. Ge	elfand and S. V. Fomin: Calculus of Variations, Prentice Hall, 1963.
4. R. We	instock: Calculus of Variations with Applications to Physics and Engineering,
Dover,	
5. R. Cou	urant and D. Hilbert: Methods of Mathematical Physics, Vol I. John Wiley &
Sons,	1989.
6. L.E. El	Isgolc: Calculus of Variations, Pergamon Press Ltd., 1962.
7. D. Por	ter and D. S. G. Stirling: Integral Equations - A Practical Treatment from Spectral
Theory	and Applications, Cambridge University Press, 1990.
8. C. Co	rdumeanu: Integral Equations and Applications, Cambridge University Press,
1991.	
9. S. G. N	Aikhlin: Integral Equations, Hindustan Publishing Co., 1960.

10. E. G. Tricomi: Integral Equations, Interscience, 1957.

 ${}^{\rm Page}22$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

11. F. B. Hildebrand: Methods of Applied Mathematics, 2nd edition, Prentice Hall, 1965. 12.M. D. Raisinghania, Integral Equations And Boundary Value Problems, S. Chand, 2016. Reference Books:

MMA 211040 Partial Equations Compulsory L 3 T 1 P 0 4 Pre-requisite : : .	Course Code	Course Title	Course Type		Cor	ntact H	Iour	S		Credit
Differential Equations Differential Equations Pre-requisite : Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations) Syllabus Version : 02 Course Objective: The course is aimed at exposing the students to how to solve linear and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to • Understand the partial differential equation problem and analyze linear and non-linear systems. • Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. • Determine integral surfaces passing through a curve, characteristic curves of second order. • Duderstand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. • Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. • Extract information from partial dirferential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linea	MMA 211040	Partial	Compulsory	L	3	Т	1	Р	0	4
Equations Image: Construct the second se		Differential						l		
Pre-requisite : Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations) Syllabus 02 Version : Course Objective: The course is aimed at exposing the students to how to solve linear and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to • Understand the partial differential equation problem and analyze linear and non-linear systems. • Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. • Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. • Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. • Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. • Extract information from partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cau		Equations								
Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations) Syllabus 02 Version : Course Objective: The course is aimed at exposing the students to how to solve linear and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to • Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. • Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. • Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. • Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. • Extract information from partial differential equations. Solution of linear and nonlinear partial differential equations of order to interpret reality. • Identify real phenomena as models of partial derivative equations Unit - 1 Introduction to pa	Pre-requisite	:	·							
Syllabus 02 Course Objective: The course is aimed at exposing the students to how to solve linear and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to • Understand the partial differential equation problem and analyze linear and non-linear systems. • Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. • Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. • Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. • Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. • Extract information from partial differential equations. Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations.	Course Assessn	nent Methods :	As per CUJ norr	ns (60 i	narks	from	enc	l sem	ester	and 40
Syllabus 02 Version : Course Objective: The course is aimed at exposing the students to how to solve linear and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to • Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. • Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. • Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations.	0 11 1	0.2	marks from session	onal exar	nınatı	lons)				
 Version : Course Objective: The course is aimed at exposing the students to how to solve linear and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	Syllabus	02								
 Course Objective. The course is affied at exposing the students to how to solve finder and non-linear Partial Differential Equation with different methods and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial differential equations. Solution of linear and nonlinear and differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	Course Object	Course Objective: The course is aimed at exposing the students to how to solve linear and								
 Individual principlinal Equation with differential functions and to derive heat and wave equations in 2D and 3D. Find the solutions of PDEs are determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial differential equations. Solution of linear and nonlinear and infinition to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	non-linear Partial Differential Equation with different methods and to derive heat and wave									
 boundary of the spatial domain and initial conditions of FDEs the determined by conditions at the boundary of the spatial domain and initial conditions at time zero. Technique of separation of variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	equations in 2	D and 3D Find	the solutions of P	DEs are	deter	rmine	d hv		litions	at the
 variables to solve PDEs and analyze the behavior of solutions in terms of eigen function expansions. Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations. 	boundary of the	e spatial domain a	and initial condition	ns at tim	e zero) Tecl	hnia	ue of	senar	ation of
 expansions. Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	variables to so	lve PDEs and ar	nalvze the behavio	r of solu	utions	$\sin t\epsilon$	erms	of ei	gen f	unction
 Course Outcome: After the completion of the course, Students will be able to Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	expansions.								0-	
 Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	Course Outcon	ne: After the con	mpletion of the cou	rse, Stuc	lents	will b	e abl	e to		
 Understand the partial differential equation problem and analyze linear and non-linear systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 										
 systems. Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	 Understa 	• Understand the partial differential equation problem and analyze linear and non-linear								
 Classify second order PDE and solve boundary value problems by using separation of variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	systems.	systems.								
 variable method. Solve linear partial differential equations of both first and second order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	• Classify	second order PD	E and solve bound	ary valu	e prol	blems	by ı	ısing	separa	ation of
 order. Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	variable	method. Solve 1	inear partial differ	ential ec	quatio	ons of	botl	1 first	t and	second
 Determine integral surfaces passing through a curve, characteristic curves of second order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	order.									_
 Order PDE and compatible systems. Understand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit - 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	Determin	ne integral surfac	es passing through	h a curv	e, cha	aracter	ristic	curv	es of	second
 Orderstand the formation and solution of some significant PDEs like wave equation, heat equation and diffusion equation. Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	order PD	E and compatible	e systems.		:e		Ca 1:	1		mation
 Apply specific methodologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	Understa heat equi	ation and diffusion	n equation	ome sigi	iiiicai	IL PD	es n	Ke wa	ive et	luation,
 Apply specific includologies, techniques and resources to conduct research and produce innovative results in the area of specialisation. Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 		necific methodol	logies techniques	and rea	ource	e to	con	duct -	recear	ch and
 Extract information from partial derivative models in order to interpret reality. Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	• Apply s	innovative results	s in the area of spec	cialisatio	n	.5 10	COIN	Juct	lescal	chi allu
 Identify real phenomena as models of partial derivative equations Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. 	 Extract i 	nformation from	partial derivative n	nodels in	orde	r to in	tern	et rea	lity	
Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations.	• Identify	real phenomena a	s models of partial	derivati	ve ea	uation	S.			
partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations.	Unit – 1 In	troduction to par	tial differential eq	uations.	Solu	tion o	f lin	lear a	nd no	onlinear
Homogeneous and non-homogeneous linear partial differential equations.	pa	rtial differential	equations of order	r one. Ir	ntrodu	iction	to (Cauch	y's p	roblem.
	He	omogeneous and	non-homogeneous	linear pa	artial o	differe	entia	l equa	tions.	
Unit-2 Classification of partial differential equations, reduction to canonical or normal	Unit – 2 Cl	assification of pa	artial differential ec	quations,	redu	ction	to ca	nonic	cal or	normal
form. Monge's method, second order Cauchy Problem.	fo	rm. Monge's met	hod, second order	Cauchy I	Proble	em.				
Unit – 3 The Cauchy problem and initial conditions, Solution of homogenous and non-	Unit – 3 T	he Cauchy probl	em and initial con	ditions, S	Soluti	on of	hom	logen	ous ai	nd non-
homogenous problem, heat kernel. D'Alembert solution of the Cauchy	h	omogenous prob	olem, heat kernel	. D'Ale	ember	t sol	utior	ı of	the	Cauchy
problem, the characteristic triangle, Fourier series solution.	p	roblem, the chara	cteristic triangle, F	ourier se	eries s	olutic	n.			
Cartesian Coordinate: Heat Equation: the heat equation in two space		artesian Coord	unate: Heat Equ	uation: 1	the h	eat e	quati	.0n 11	1 two	space
variables. wave equation. A wave equation in two space dimensions, The		anables. wave e	quation. A wave	equation	u m	iwo s	pace	um	ension	<u>15, 1 ne</u>

Page23

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	Kirchhoff-Poisson solution, Hadamard's method of Descent. Laplace's equation: Dirichlet and Neumann Problems Harmonics functions, Dirichlet
	problems, Poisson's integral representation, The Neumann problem, Green's function, conformal techniques, existence theorems, solutions by Eigen
	function expansions. Elliptic equations: Existence of weak solutions, The
Unit _ 4	Polar Coordinate: Heat Equation: the heat equation in two space variables
	Wave equation: A Wave equation in two space dimensions. The Kirchhoff-
	Poisson solution, Hadamard's method of Descent. Laplace's equation: Dirichlet
	and Neumann Problems Harmonics functions, Dirichlet problems, Poisson's
	integral representation, The Neumann problem, Green's function, conformal
	techniques, existence theorems, solutions by Eigen function expansions.
	Elliptic equations: Existence of weak solutions, The maximum principle,
Unit – 5	Cylindrical Coordinate: Heat Equation: the heat equation in two space
	variables. Wave equation: A Wave equation in two space dimensions, The
	Kirchhoff-Poisson solution, Hadamard's method of Descent. Laplace's
	equation: Dirichlet and Neumann Problems Harmonics functions, Dirichlet
	problems, Poisson's integral representation, The Neumann problem, Green's
	function, conformal techniques, existence theorems, solutions by Eigen
	maximum principle Green's identities
Text Books	
1. P.V. (D'Neil: Beginning Partial Differential Equations, 2 nd edition, Wiley, 2008.
2. Y. Pi Camb	nchover and J. Rubinstein: An Introduction to Partial Differential Equations, bridge University Press, 2005.
3. R. H	Iaberman: Applied Partial Differential Equations with Fourier Series and
Boun	dary Value Problems, 4 th edition, Pearson, 2004.
4. M. D	. Raisinghania: Advanced Differential Equation, 19 th edition, S. Chand, 2018.
5. R. A	garwal and D. O'Regan: Ordinary and Partial Differential Equations. With
6 L C Ex	vans: Partial Differential Equations AMS 1998
7.E. A. (Coddington and N. Levinson: Theory of Ordinary Differential Equations. Tata
McGraw	Hill, 1987.
Reference B	ooks:

Course Code	Course Title	Course Type		Cor	ntact I	Hour	S		Credit
MMA 215040	Theory of	Elective	L	3	Т	1	Р	0	4
	Computations								
Pre-requisite	:								
Course Assessm	Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40						and 40		
		marks from session	onal exam	minati	ions)				
Syllabus	02								

 ${}_{\rm Page}24$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Version :

Course Objective: To provide the comprehensive insight into theory of computation by understanding grammar, languages and other elements of modern language design. To develop capabilities to design and develop formulations for computing models. To identify computing model applications in diverse areas. To introduce students to the mathematical foundations of computation including automata theory; the theory of formal languages and grammars; the notions of algorithm, decidability, complexity, and computability. Students will learn that certain problems do not admit efficient algorithms and identify such problems. **Course Outcome:** By the end of this course students will be able to:

- Will apply knowledge of computing and mathematics appropriate to the discipline.
- Learn about Automata theory and its application in Language Design.
- Learn about Turing Machines and Pushdown Automata and understand Linear Bound Automata and its applications.
- Discuss key notions of computation, such as algorithm, computability, decidability, reducibility, and complexity, through problem solving.
- Solve computational problems regarding their computability and complexity and prove the basic results of the theory of computation

Unit – 1	Unit 1: Chomsky Hierarchy: regular grammars, unrestricted grammars, context						
	sensitive languages, relations between classes of languages. Finite Automata and						
	Regular Expressions: Deterministic and non-deterministic finite automata,						
	regular expressions, Two way finite automata, finite automata with output:						
	Mealy and Moore machines; Properties of Regular Sets: Pumping lemma,						
	closure properties, decision algorithm, MyHill-Nerode theorem and						
	minimization of finite automata.						
Unit – 2	Context-Free Grammars (CFG): CFGs, derivation trees, simplification,						
	Chomsky normal forms, Greibach normal forms; Pushdown Automata (PDA):						
	Definitions, relationship between PDA and context free languages, Properties of						
Context-Free Languages, Pumping lemma, closure properties, decision							
algorithm; Turing Machines: The turing machine model, computable language							
and functions, techniques for turing machine construction, modification o							
turing machines, Church's hypothesis, Turing machines as enumerators;							
Unit – 3	Decidability: Decidable Languages, The Halting problem, Reducibility.						
	Undecidability: properties of recursive and recursively enumerable languages,						
	universal Turing machines, rice's theorem, post correspondence problem,						
	Greibach's theorem, Introduction to recursive function theory; Complexity						
	Theory: Measuring complexity, The P, NP, NP-Hard and NP completeness						
Text Books							
1. K.L.	P. Mishra and N. Chandrasekharan: Theory of Computer Science: Automata						
Lang	uage and Computation, Prentice Hall of India, 3 rd edition, 2007.						
2. P. Li	nz: Introduction to Formal Language and Computation, Narosa, 2 nd edition, 2006.						
3. M.S	ipser: Introduction to the Theory of Computation, Thomson Learning, 2001.						
4. J. M	artin: Introduction to Languages and the Theory of Computation, 3 rd edition,						
McG	McGraw Hill, 2002.						

5. J. E. Hopcroft, R. Motwani and J.D. Ullman: Introduction to Automata Theory, Languages and Computation, 2nd Edition, Pearson Education, 2001.

ഥ Page 4

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Reference Books:			

Course Code	Course Title	Course Type	Contact Hours						Credit
MMA215060	Field Theory	Compulsory	L	3	Т	1	Р	0	4
Pre-requisite	Pre-requisite :								
Course Assessr	nent Methods :	As per CUJ norr	ns (60 1	marks	fron	n end	sem	nester	and 40
	1	marks from session	onal exar	ninati	ons)				
Syllabus	02								
Version :									
Course Object	tive: The prerequ	isite course is Abst	ract Algo	ebra. 7	This o	course	e aim	s to p	rovide a
approach to the subject of advanced algebra, which is one of the main pillars of modern									
mathematics. The focus of this course will be the study of certain structures called fields									
theory and some related structures. In particular to study in detail the Galois Theory and									
polynomials ri	polynomials rings. This course can help to gain skills in problem-solving and critical								
thinking. Field	Theory is a cla	issical field that is	associa	ted w	1th th	he stu	idy o	of poly	nomial
rings and irreducibility criteria. Field extensions, Algebraic field extensions									
Course Outcome: The student will be able to apply the basic concepts of field theory,									
including field extensions and finite fields. Students also can use diverse properties of field									
extensions in various areas. Establish the connection between the concept of field extensions									
and Galois Theory. They also describe the concept of automorphism, monomorphism and									
their intear inc	rependence in ind	tions and solve not	ermone, Irmomiol		nts c	an co	npu	le me	Galois
the understand	ng of ruler and o	mass construction	ng	equa	uions	by Ia	aurca	18 alo	ng with
Unit 1 Fie	ldg finite fields	Polynomial rings a	nd irred	ucibil	ity or	itoria	Fiel	d ovt	angiong
	gebraic field exte	nsions	ina mea	ucion		nona	. 110		,11510115,
Unit -2 No	rmal and Separal	ble Extensions Ga	lois exte	ension	s Fi	Indam	enta	1 The	orem of
Ga	lois Theory.				,		lenta	1 1 110) 10 111 01
Unit – 3 C	onstructibility by	ruler and compas	s. Solval	bility	by ra	adical	s. In	solvał	oility of
th	e general quintic	by radicals.	-,		<i>.</i>		~,		,
Text Books:	0 1	5							
1. P. B. Bł	attacharya, S. K	. Jain, S. R. Nagp	aul: Ba	sic Al	bstrad	ct Alg	gebra	2^{nd}	edition,
Cambrid	ge, 1995.							-	,
2. M. Artin: Algebra, 2 nd Edition, Pearson Education India, 2015.									
3. S. Lang:	3. S. Lang: Algebra, 3 rd edition, Springer, 2005.								
4. J. Rotman: Galois Theory, 2 nd edition, Springer, 2006.									
5. P. Morar	5. P. Morandi: Field and Galois Theory, Springer, 2010.								
6. I. S. Lutl	har and I. B. S. Pa	assi: Algebra 4 - Fie	eld Theo	ry, Na	arosa,	, 2004	ŀ.		
Reference Boo	ks:								

 ${}^{\rm Page}26$

 ${}_{\rm Page}27$

झारखण्ड केन्द्रीय विष्वविद्यालय CENTRAL UNIVERSITY OF JHARKHAND

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Code	Course Title	Course Type		Con	tact I	Hours			Credit
MMA215070	Statistics- II	Compulsory	L	3	Т	1	Р	0	4
Pre-requisite	:								
Course Assess	Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40						and 40		
	marks from sessional examinations)								
Syllabus	02								
Version :									
Course Objec	Course Objective: To derive suitable point estimators of the parameters of the distribution of								
a random vari	a random variable and give a measure of their precision. To learn computational skills to								
implement var	rious statistical in	ferential approach	es. To 1	learn th	ne de	velop	ment	t of n	ull and
alternative hy	potheses. To learn	n types of errors,	non-pa	rametri	c tes	ts. To	per	form	Test of
Hypothesis as	well as obtain MP	, UMP tests.							
Course	e Outcome: Kno	owledge about for	mulatin	g and	testir	ng a	hypo	thesis	, using
critical	values to draw c	onclusions and de	termini	ng prol	babili	ty of	mak	ing e	rrors in
hypoth	esis tests.								
• List the	e ideal properties of	of point estimators	of an u	nknow	n para	amete	er of a	a disti	ibution
and sel	ect the best estima	tors using differen	t propei	ties.					
• Unders	stand Basics of Int	erval Estimation.							
• Determ	nine estimators of	unknown parame	ters usi	ng met	hods	like	MLE	E, Me	thod of
momer	nts etc.								
Unders	stand the stochastic	c processes, Marko	v chain	s, Tran	sition	ı prob	abilit	ty ma	trix and
various	s types of states								
Obtain	asymptotic confid	dence interval of a	parame	eter and	d its	relatio	on w	ith tes	sting of
hypoth	esis problem								
Unit - 1	Inequalities and	Limit Theorem	ms: In	troduct	tion,	Mar	kov's	Ine	quality,
	Chebyshev's Ineq	uality, One-sided (Chebysł	iev Ine	equali	ty, Je	nsen	's Ine	quality,
	Random Sample,	Modes of Converg	gence o	t a seq	uenc	e of i	rando	om va	riables:
	Convergence in D	istribution, Converg	gence II	1 Proba	ability	, Cor	iverg	ence	Almost
	Sure; weak Law (of Large Numbers	(WLLI	N), Stro	ong I	Law o	or Lai	rge N	umbers
	(SLLN) and Centr	al Limit Theorems	$\frac{(CLI)}{Delivet}$	F = 4 :			4	1	
Unit - 2	I neory of Estima	tion: Introduction	, Point	Estima	tion a	ind In	terva	I ESU	mation,
	Methods of Est	imation: Method	OI M	aximur	n Li	Kenno	00a,		
-	Sufficiency: Mini	mum Variance III	hiagod	Eatim	ss, C			, Ell.	leftency,
	Inequality Minim	um Variance Pour		ESUIII 2) Fatim	aiui		UEJ, No Ect	Ciall timot	ici-itau
Unit 2	Confidonae Inter	uni variance Dound	$1 (1 \times 1 \times 1$	of Estin	nator,	Daye	23 ESI 1000	and V	ns.
0 m $- 3$	of a Normal Dist	ribution CL on a	Proport	ion Cl	[0, U]	the di	iffera	anu V	atween
	Means for Paired	Observations CI	on the	ratio o	f Var	iance	s of	Two	Normal
	Distributions CLO	on the difference be	tween 7	Two Pr	i val	ione	5 01	IWU.	internation
Unit _ 4	Tests of Hunotha	ses. Introduction	Statistic	al Hum	othe		una 1	and	Type II
	Friors One-Sided	and Two_Sided	Hypoth	ai 119[esec - 7	Feete	of H	ype-1	1 allu	on the
	Errors, One-Stated and Two-Stated Hypotneses, Tests of Hypotneses on the Mean of a Normal Distribution: Variance Known as well as Unknown Cases								
,	Tests of Hypothe	ses on the Variat	nce of	a Noi	us w mal	Dietr	ihuti	on T	ests of
	Hypotheses on a P	Proportion Tests of	Hypoth	a 1101	n the	Mean	is of	Two	Normal
	Distributions. Vari	ances Known as w	vell as I	Inknov	vn Ce	ases "	The I	Paired	t-Test
	Tests for Equality	of two Variances	Tests of	of Hvn	othes	es on	two	Pron	ortions
,	Testing for Goodn	ess of Fit Conting	ency Ta	hle Teo	sts N	evma	n-Pe	arson	Theory
	resulting for Goodill	cas of the Conting	chey ra		no, ™	e y ma	11-1 00	u1 3011	rncory

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio
	Tests Unbiased Tests
Text B	ooks
1.	S.M. Ross: Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 4 th Edition, 2010.
2.	W.W. Hines, D.C. Montgomery, D.M. Goldsman, and C.M. Borror: Probability and Statistics in Engineering, John Wiley and Sons, 7 th Edition, 2018.
3.	S.C. Gupta and V.K. Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand and Sons, 2007.
4.	A.M. Goon, M.K. Gupta, B. Dasgupta: Fundamental of Statistics, Vol. I, II, World Press, 2001.
5.	V.K. Rohatgi and A.K. Ehsanes Saleh: An Introduction to Probability and Statistics, John Wiley and Sons, Inc. 2015.
6.	G. Casella and R.L. Berger: Statistical Inference, Cengage Learning, 3 rd Edition, 2008.
7.	S. Ross: A First Course in Probability, 8 th Edition, Pearson Education, 2010.
D.C.	
Refere	nce Books:

Course Code	Course Title	Course Type		Cor	ntact H	Hour	S		Credit
MMA215080	Discrete	Compulsory	L	3	Т	1	Р	0	4
	Mathematics								
Pre-requisite	:								
Course Assessn	ent Methods: As per CUJ norms (60 marks from end semester and 40						and 40		
		marks from session	onal exar	ninati	ons)				
Syllabus	02)2							
Version :									
Course Object	tive: Throughout	the course, studen	nts will	be ex	pecte	d to	demo	onstra	te their
understanding	of discrete mathe	ematics by being a	able to o	do us	e of 1	math	emati	cally	correct
terminology an	d notation, const	ruct correct direct	and indi	rect p	proofs	, and	d use	divisi	on into
cases in a proc	of and apply logi	ical reasoning to s	olve a v	variety	/ of p	orobl	ems.	Also,	in this
course basic co	course basic concepts of Graph theory such as Trees, Eulerian Graphs, Matching, Vertex					Vertex			
colourings, Edge colourings, Planarity, are introduced.									
Course Outcon	Course Outcome: At the end of the course, the students will be able to :								

- 1. Construct mathematical arguments using logical connectives and quantifiers.
- 2. Understand how lattices and Boolean algebra are used as tools and mathematical models in the study of networks.
- 3. Validate the correctness of an argument using statement and predicate calculus.
- 4. Learn how to work with some of the discrete structures which include sets, relations, functions, graphs and recurrence relation.
- 5. Understand the concepts Planarity including Euler identity.
- 6. Discuss and understand the importance of the concepts Matching's and Colourings'

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 1	Mathematical Logic: Basic Logical Operations, Conditional And Bi-
	Conditional Statements, Tautologies, Contradiction, Predicate Calculus Truth
	Table.
Unit – 2	Recursion and Recurrence Relations: Polynomial expressions, telescopic
	form, recursion theorem, closed form expression, generating function, solution
	of recurrence relation using generating function, recursion. Pigeon Hole
	Principle, Inclusion Exclusion Principle, Techniques of Counting, Recurrence
	relations.
Unit – 3	Graph Theory: Introduction to Graph Theory, Basic terms of graph theory,
	handshaking theorem, Eulerian Graph, Hamiltonian Graph, Planar Graph,
	Colouring of Graphs, Colouring problem, Five colour Theorem.
Unit – 4	Boolean Algebra: Introduction to Binary relations, equivalence relations and
	partitions, Partial order relations, Hasse diagram. Lattices as partially ordered
	sets, properties, lattices as algebraic systems, sub lattices. Boolean algebra as
	lattices, Boolean identities, sub-algebra, Boolean forms and their equivalence,
	Applications of Boolean algebra to circuit theory.
Taxt Dooleg	

Text Books:

- *K. D. Joshi: Foundations* of Discrete Mathematics, New Age International Pb., 1996.
 R. A. Brualdi, Introductory Combinatorics, 5th Edition, Pearson Education, 2009.
 R. J. Wilson, Introduction to Graph Theory, 5th edition, Prentice Hall, 2010.

- 4. J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Application to Computer Science, Tata McGraw-Hill, 2008.
- 5. R. Johnsonbaugh, Discrete Mathematics, Eighth Edition, Pearson, 2015.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours Credi						Credit
MMA215090	Fluid	Compulsory	L 3 T 1 P 0 4						4
	Dynamics								
Pre-requisite	:	· · · · · · · · · · · · · · · · · · ·							
Course Assessm	nent Methods :	As per CUJ nor	ns (60 1	narks	from	n enc	1 sem	ester	and 40
marks from sessional examinations)									
Syllabus	02								
Version :									
Course Object	ive:								
• To understand the properties of fluids and fluid statics									
• To derive the equation of conservation of mass and its application									
• To solve kinematic problems such as finding particle paths and stream lines									
• To use important concepts of continuity equation Bernoulli's equation and turbulence									

- To use important concepts of continuity equation, and apply the same to problems
- To analyze laminar and turbulent flows
- To understand the various flow measuring devices

Course Outcome:

 ${}_{\rm Page}29$

- Determine the fluid pressure and use various devices for measuring fluid pressure.
- Calculate hydrostatic force and use of law of conservation mass to fluid flow.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- Apply Bernoulli's equation to fluid flow problems and boundary layer theory to determine lift and drag forces on a submerged body.
- Ability to present data or governing equations in non-dimensional form, design experiments, and perform model studies and to decide when appropriate to use ideal flow concepts and the Bernoulli equation.
- Ability to solve for internal flow in pipes and channels through simple solutions of the Navier-Stokes equations, Moody chart and head-loss equations.
- Ability to solve for external flow, evaluate lift and drag, know when there is possibility of flow separation, apply streamlining concepts for drag reduction by using experimental correlations.

An understanding of how fluid mechanics applies to mechanical, biological and environmental systems.

Unit – 1	Lagrangian and Eularian description, stream lines, path lines, streak lines,							
	vortex lines, vorticity vector, equation of continuity, circulation, rotational and							
	irrotational flows, boundary surface.							
Unit – 2	General equations of motion, Bernoulli's theorem (Compressible,							
	incompressible flows) Kelvin's theorem (constancy of circulation). Stream							
	function, complex potential, sources, sinks and dublets, Circle theorem,							
	Method of images. Theorem of Blasius.							
Unit – 3	Viscuss flows- stress analysis in fluid motion, relations between stress and rate							
	of strain. Stoke's stream function, Spherical Harmonics and motion of a							
	Sphere. Helmholtz's vorticity equation (permanence of vorticity) Vortx							
	filaments, vortex pair.							
Unit – 4	Navier-Stoke's equations, Dissipation of energy, Diffusion of vorticity, Steady							
	flow between two infinite parallel plates, through a circular pipe (Hagen							
	Poiseuille flow).							
Text Books:								
1. R.W.	Fox et.al. Introduction to Fluid Mechanics, 10 th edition, Wiley, 2020.							
2 BR Munson et al Fundamentals of Fluid Mechanics 9 th edition Wiley 2021								
3. A K	Mohanty: Fluid Mechanics 2 nd edition PHI 2009							
4 MD	Raisinghania: Fluid Dynamics 0 th edition S Chand 2010							
4. WI.D.	Kaisinghama. Futu Dynamics, 7 Cuttion, 5. Chanu, 2010.							

5. F. Durst, Fluid Mechanics: An introduction to the Theory of Fluid Flows, Springer, 2008.

Reference Books:

Course Code	Course Title	Course Type		Cor	ntact I	Hour	S		Credit
MMA215100	Theory and	Compulsory	L 3 T 1 P 0				0	4	
	Applications								
	of Fuzzy Sets								
Pre-requisite	:								
Course Assessme	ent Methods :	As per CUJ norr	ns (60 1	marks	from	n enc	l sem	lester	and 40
		marks from session	onal exa	minat	tions)				
Syllabus	02								

 $P_{age}3C$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Version :

Course Objective: To introduce the theory of fuzzy sets. To discuss theoretical differences between fuzzy sets and classical sets. To discuss fuzzy logic inference. To introduce fuzzy arithmetic concepts. To discuss fuzzy inference applications in the area of control. **Course Outcome:** The Student will be able to:

- interpret fuzzy set theory and uncertainty concepts
- identify the similarities and differences between probability theory and fuzzy set theory and their application conditions
- apply fuzzy set theory in modeling and analyzing uncertainty in a decision problem
- apply fuzzy control by examining simple control problem examples.

Unit – 1	Basic concepts of fuzzy sets, fuzzy logic, operations on fuzzy sets, fuzzy	y
	relations, equivalence and similarity relations, ordering, morphisms, fuzzy	y
	relation equations.	
TT '' O		

Unit – 2 fuzzy measures, probability measures, possibility and necessity measures, measures of uncertainty, dissonance, confusion and nonspecificity.

Unit – 3 Principles of uncertainty and information. Applications of fuzzy sets in management, decision making, computer science and systems science.

Text Books:

- 1. T. J. Ross: Fuzzy Logic with Engineering Applications, 4th edition, Wiley, 2017.
- 2. G. J. Klir and B. Yuan: Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, 1995.
- 3. G. Chen and T. Pham: Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, CRC, 2000.
- 4. H. J. Zimmermann: Fuzzy Set Theory and Its Applications, 3rd edition, Springer, 1996.

Reference Books:

appropriate data structures.

Course Code	Course Title	Course Type	Contact Hours Credi						Credit
MMA215110	Data	Compulsory	L 3 T 0 P 1 4						4
	Structures								
	and								
	Algorithm								
	Analysis								
Pre-requisite	:								
Course Assessm	nent Methods :	As per CUJ norms (60 marks from end semester and 40							
		marks from session	onal exar	ninati	ons)				
Syllabus	02								
Version :									
Course Objective: Acquire some basic mathematical tools and techniques of algorithm									
analysis. To familiarize with basic data structures and to develop the ability to choose the				ose the					
appropriate dat	appropriate data structure for designing efficient algorithms. Learn some basic algorithms								

with their rigorous proofs of correctness and efficiency analysis of implementation using

 $^{age}31$

झारखण्ड केन्द्रीय विष्वविद्यालय CENTRAL UNIVERSITY OF JHARKHAND (भारतीय संसद के अधिनियम 2009 द्वारा स्थापित)

(Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Outcome: The Student will be able to:

- To understand basic data structures, their implementation and some of their standard applications.
- To develop the ability to design and analyze basic algorithms and prove their correctness using the appropriate data structure learned in the course

Unit – 1	Data and Algorithms
	Introduction to Data, Information and structures of Data, Algorithms (Quick
	Review with algorithm design techniques). Introducing uses of data structures
	in algorithms (fundamental examples).
Unit – 2	Asymptotic analysis
	Introduction to Algorithms' analysis, cost of algorithms in terms of steps (time)
	and space (memory).
	Asymptotic Notations and analysing algorithms growth of functions (Graph
	representation). Recurrance and asymptotic notations, solving recurrences
	(Master theorem), Problems practices.
Unit – 3	Algorithms and analysis
	Searching: Linear, Binary, B-Tree, DFS, BFS, Binary Search Tree, AVL Search
	Tree, Hashing.
	Sorting: Finding max, min and sorting, Insertion Sort, Bubble Sort, Selection
	Sort, Heap sort, Quick sort, Merge sort, String sort.
	Strassen's matrix multiplication, Sum of subsets, Minimum spanning trees,
	Shortest Path algorithm.
Text Books:	· · · · · · · · · · · · · · · · · · ·
1. R.B.	Patel, Expert Data Structure with C, 4 th edition, Khanna Publishers, New Delhi,
2018.	
2. N.W	irth, Algorithms + Data Structures = Programs, 1 st edition, Prentice Hall, 1976.

- E. Horowitz, S. Sahni and S. Rajasekaran: Fundamentals of Computer Algorithms, 2nd edition, Universities Press, 2008.
- 2. T.H. Coremen, C.E. Leiserson, R.L. Rivest and C. Stein: Introduction to Algorithms, 20th edition, Prentice Hall India, 2010.
- 3. S. Lipschutz, Data Structures with C (Schaum's Outline Series), McGraw Hill Education P Ltd, New Delhi, 2017.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours Cred					Credit	
MMA215120	Cryptography	Compulsory	L 3 T 1 P 0 4						4
Pre-requisite	:								
Course Assessm	nent Methods :	As per CUJ norn marks from session	ns (60 i onal exa	marks Imina	fron tions)	n eno	l sem	ester	and 40
Syllabus	02								
Version :									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Objective: Understanding the fundamental cryptographic concepts such as encryption, decryption, cryptographic keys, algorithms, and cryptographic protocols. Familiarity with various cryptographic algorithms (e.g., symmetric-key algorithms like AES, DES, asymmetric-key algorithms like RSA, elliptic curve cryptography) and protocols is essential. Understanding how these algorithms and protocols work, their strengths, weaknesses, and appropriate use cases. is typically covered. Apart from these application of cryptographic techniques on secure communication, data integrity verification, authentication, digital signatures, and more to be discussed.

Course Outcome: By the end of this course students will be able to:

- Learn basic concepts of Cryptography, to calculate the tome complexity of an algorithm with big Oh notation.
- Learn methods to factorize of a number and fast exponent.
- Different type of cryptographic encryption schemes
- Application of Number theoretic results in cryptography
- Learn the concept of OTP, DES and its advanced version i.e AES algorithms.
- Learn different types of Public key cryptography like RSA, Rabin encryption, Diffie-Hellman key exchange, ElGamal cryptosystem.
- Programming of each encryption schemes with C++ and Sagemath

Unit – 1	Introduction to basic terminologies associated with Cryptography, Definition
	and classification of Cryptosystem, Classical crypto systems, Description of
	rail fence cipher, Simple Columnar cipher, Caesar cipher, Linear cipher, Affine
	linear cipher, Distinction between Substitution cipher and Permutation cipher.
	Classical cipher as particular case of Affine linear cipher, Insecurity of Affine
	linear cipher. Mathematical problems related to cryptography, Division
	Algorithm and extended Division Algorithm, Calculation of Units in Z/nZ, Fast
	Exponentiation, Factoring problem, Different factorisation Algorithms,
	Discrete Log Problem, Discussion of different algorithms for finding discrete
	log.
Unit – 2	Block cipher and different modes of implementation of Block cipher, Stream
	cipher, Feistel cipher, DES (Data Encryption Standard) and AES (Advanced
	Encryption Standard).
Unit – 3	Public Key cryptosystems, Need for Public Key cryptosystems, Description of
	RSA, Rabin cryptosystem, Diffie-Hellman key exchange, ElGamal
	cryptosystem, Cryptanalysis of Public Key cryptosystem, Digital signatures,
	Introduction to Elliptic curve cryptography, Perfect security and Shanon's
	Theorem.
Text Books:	
1. J.A.	Buchmann: Introduction to Cryptography, Springer, 2004.

- 2. N. Koblitz: A Course in Number Theory and Cryptography, Springer, 1994.
- 3. M. Welschenbach: Cryptography in C and C++, 2^{nd} edition, Apress, 2002.
- 4. C. Paar and J. Pelzl Understanding Cryptography Springer, 2010.

 ${}^{\rm Page}33$

 ${}_{\rm Page}34$

झारखण्ड केन्द्रीय विष्वविद्यालय CENTRAL UNIVERSITY OF JHARKHAND

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Reference Books	S:		

Course Code	Course Title	Course Type		Cor	ntact I	Hour	S		Credit
MMA215130	Java	Compulsory	L	3	Т	0	Р	1	4
	Programming	1 2							
Pre-requisite	:		•						
Course Assess	sment Methods :	As per CUJ nor	ns (60 1	narks	from	n enc	1 sem	ester	and 40
		marks from session	onal exai	ninati	ions)				
Syllabus	02								
Version :									
Course Obje	ctive: The course r	provide profound k	nowledg	e in h	uman	ities	and b	asic s	ciences
along with c	core science/engin	eering concepts	for prac	tical	unde	rstar	nding	and	project
development.	In Career Advanc	ement: Enrich ana	lvtical a	nd in	dustry	v bas	ed te	chnica	al skills
for accomplis	hing research hig	her education and	entrepre	eneurs	ship '	This	cours	e also) Infuse
life-long learn	ing professional e	thics adaptation to	o innova	tion a	and ef	fecti	ve co	mmiir	nication
skills with a s	ense of social awar	eness				10011		liiiiigi	neution
Course Outo	come: After comp	letion of this cours	se stude	nt wa	blud	he a	hle to	und	erstand
Object-Orien	ted Programmin	6 & System conce	nts to ar	nlv ir	n hasi	c Iav		struct	s Next
they analyze	the different form	s of inheritance	and usa	oe of	Fxc	entio	n Ha	ndling	x Also
students under	rstand the different	t kinds of file I/O	Multithr	eadin	n in c	omn	lev Ia	va nro	orams
and usage of	Container classes	E Furthermore st	udents co	ontrac	t diff	aran	t Cro	va pro	J Llsor
Interface lov	outs and design (ranhial Usar In	torfogo	oppli	i um		inolly	tho o	ii Usei
accention of the	Unis and uesign C	oraphical User In	face	appin		IS. Г. Д А.,	many	ule S	atabaga
	n-neugeu Java Gra	apincal User Inter	Tace app	Jiicati	on an	lu Al	piet v	viui u	alabase
Luit 1				1. : 4 4		Data	T	. 0	
Unit - 1	Amous Commond	Ling A rown anta (Albate	Dala	Туре	s, Op	erators,
	Arrays, Command	D 1	<u>JOPS In</u>	Java,	Adsu		· ~	г	
Unit - 2	Classes, Interfaces	s, Packages, Acces	s modifi	ers, A	Acces:	s Spo	ecifiei	rs, Ex	ception
	Handling, Applet,	Multithreading, St	reams (F	$\frac{110 \text{ I/C}}{\text{T}}$	J),	1	/•	(1.4)	<u> </u>
Unit - 3	Introduction to AV	VT, Introduction to	Collecti	on Fr	amew	vork	(java.i	util.*)	, String
	Handling.								
Unit – 4	Lab: JAVA lab. +A	ssignment:							
Text Books:									
1 H Schildt	• The Complete Re	ference 8th Editio	n Tata N	10Gr	wЦ	11 20)11		
1. II. Scillar	P Pates: SCIP	Sun Cortified Pr	n, rata r	or for		II, 20	tudu	Guid	a Tata
2. K. Siella,	D. Dates, $SCJF$	Suil Certifieu Pi	ogramme		Java		study	Guia	e, Tala
McGraw Hill, 2008.				00					
E. Balagurusa	my: Programming	with Java, 3rd/4th	Edition	Tata N	AcGra	aw H	1111 20	07/20	09
Reference Bo	oks:								
Course Code	Course Title	Course Type		Car	taat 1	Hour	0		Credit
		Course Type			nati	ioul	3		Cicuit

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

MMA215140	Graph	Compulsory	L	3	Т	1	Р	0	4
	Theory								
Pre-requisite									
Course Assess	sment Methods :	As per CUJ normarks from session	ms (60 1 onal exai	narks ninati	from ions)	enc	l sem	ester	and 40
Syllabus	02								
Version :	tive. The objective	va of the course G	roph The	orui	to in	trad	ugo st	udant	a to the
fundamental	cuve: The objective	and application	apii The	$rate = \frac{1}{2}$		whi	ab ia		s to the
disorato math	concepts, principit	boory provides a	nowarfi	ipii u 1 fra	mouvo	will rlz f	or m	a Ula adalli	ng and
analyzing rele	tionships and con	nections among ob	powern	II II.a. Vario		1 wo	rld ar	ouem	oretical
	tionships and con	neetions among of	jeets iii	vario	us ica	1-w0	nu ai	iu ilic	orenear
Course Outc	me. By the end o	f this course studer	ts will.						
Course Oute	Sinc. By the end of		113 WIII.						
 Have definit directed Learn graph relation and spin hier Compunders and H varian Comp blocks formu 	a comprehensive ions, properties, a ed and undirected g about the incidence theory. They will un nships among vert anning trees. They archical structures rehend the concept stand the condition amiltonian cycles. ts and Hall's Marri rehend the concept and explore vert and explore vert and condition number	understanding o nd representations. graphs, weighted ar ee and adjacency m understand how the tices in a graph an will understand th , data organization, ts of Euler tours an as under which a g . Students will stu age Theorem and i of connectivity rtex coloring in go per, Brook's theorem	f graph They w ad unwei natrices of ese matri d will st ne proper ad Hamil graph po dy the O ts applic in graph graphs, m, and th	s and vill be ghted of gra ces re tudy t ties o work tonian ossesse chines ations hs, in include	I sim able graph phs an eprese rees, of f trees design n cycl es Eu se Pos a in ma cludin ding p olor th	ple to dins, and nd th nt th cut e s and n. leria: stma atchi ng <i>n</i> plana neore	graph isting nd mu eir ap e con edges, l their n path n pro ng pro ar gra em.	ns, in uish b ltigra oplica nectiv cut v appli hs. Th hs or blem oblem nectiv aphs,	cluding between phs. tions in vity and vertices, ications hey will circuits and its a. ity and Euler's
Unit – 1	Graphs and Sub g	raphs:- Graphs and	d simple	grap	hs, Gi	aph	isomo	orphis	m, The
	incidence and adja	acency matrices, su	ub graph	s, cor	nnecte	d an	d bip	artite	graphs,
	walk, trail, path a	nd cycles. Applica	tion:- Tł	ne Sho	ortest	path	prob	lem, l	Dijkstra
	algorithm, Warsha	ll Algorithm.							
	Trees:- Trees, Cu	t Edge and Bond,	Cut ver	tex, s	spanni	ing t	rees a	and C	Cayley's
	formula. The Con	nector Problem: Pri	im's Alg	orithn	n, Kru	iskal	's Alg	orithr	n.
Unit – 2	Euler tour and I	Hamilton's Cycles	, charac	teriza	tion	of E	uleria	an gra	aphs, a
	necessary and son	ne sufficient charac	cterizatio	ons of	Ham	ilton	ian gi	aph. (Closure
	and degree majori	zation and related i	results, C	hines	e Pos	tmar	Prob	lem.	1
	Matchings: Theo	rem of Berge, Ma	tchings a	and co	overin	igs 11	1 Bip:	artite	graphs,
Linit 2	Application: Hall	s marriage theorem	$\frac{1}{1}$, Some $\frac{1}{1}$	ASS1g	Car	. PTO	viems	$\frac{1}{2}$	
Onit - 3	Communication N	In-connectivity a	ina bio	UKS,	Cons	uruct	ion	01 F	cenable
	Communication N	etworks.							

 ${}^{\rm Page}35$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	Vertex Coloring: Planar graph, Euler's formula, Chromatic Number, Brook's
	Theorem, 5-color theorem.
Unit – 4	Lab Component: Implementation in C: Dijkstra Algorithm, Warshall
	Algorithm, BFS, DFS, Prims Algorithm, Kruskal Algorithm, Connectivity
	Algorithm, Flurey Algorithm.

Text Books:

- 1. J.A. Bondy and U.S.R Murty: Graph Theory, Springer, 2008.
- 2. F. Harary: Graph Theory, Westview Press, 1994.
- 3. R.J. Wilson: Introduction to Graph Theory, 4th edition, Pearson, 2002.
- 4. J. Clark and D. A. Holton: A First Look at Graph Theory, World Scientific, 1991.
- 5. D.B. West: Introduction to Graph Theory, 2ndedition, PHI Learning, 2009.
- 6. N. Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall of India, 2004.

Reference Books:

Course Title	Course Type		Cor	ntact I	Hours	5		Credit
Mathematical	Compulsory	L	3	Т	1	Р	0	4
Modelling								
:	· · · · · · · · · · · · · · · · · · ·							
nent Methods :	As per CUJ norr	As per CUJ norms (60 marks from end semester and 40						
	marks from session	onal exar	ninati	ons)				
02	02							
ive: The objectiv	ve of the course Ma	athemati	cal M	odelli	ing is	s to e	quip s	tudents
nental principles	, techniques, and t	ools nec	essar	y to f	òrmı	ılate,	analy	se, and
d problems using	g mathematical mo	dels. Th	rough	this o	cours	e, stu	idents	aim to
understanding of	mathematical cond	cepts and	their	appli	catic	n in v	variou	s fields
ering, physics, e	conomics, biology	and so	cial s	cience	es. C	veral	l, the	course
wer students wi	th the ability to		h co	mplex	rea	1-woi	·ld pr	oblems
estomatically an	d quantitativaly	thoroby	nron	oring	that	n for		oora in
			prep c 11	aring	ulei	11 10	i Caro	
rch, industry, and	l various other prof	tessional	field	5.				
ne: By the end o	of this course:							
	Course Title Mathematical Modelling : nent Methods : 02 ive: The objective mental principles d problems using understanding of ering, physics, e wer students wit ystematically, and rch, industry, and ne: By the end of	Course TitleCourse TypeMathematical ModellingCompulsoryModellingCompulsory:nent Methods :As per CUJ norm marks from session02ive: The objective of the course Mathematical principles, techniques, and the d problems using mathematical model understanding of mathematical condecting, physics, economics, biology, wer students with the ability to vstematically, and quantitatively, arch, industry, and various other prof ne: By the end of this course:	Course Title Course Type Mathematical Compulsory L Modelling Compulsory L ient Methods : As per CUJ norms (60 marks from sessional examonal	Course TitleCourse TypeCorMathematicalCompulsoryL3ModellingI3:nent Methods :As per CUJ norms (60 marks marks from sessional examinati02ive: The objective of the course Mathematical M mental principles, techniques, and tools necessary d problems using mathematical models. Through understanding of mathematical concepts and their ering, physics, economics, biology, and social s wer students with the ability to approach con- ystematically, and quantitatively, thereby prepare h, industry, and various other professional fields ne: By the end of this course:	Course TitleCourse TypeContact HMathematicalCompulsoryL3TModellingI3T:nent Methods :As per CUJ norms (60 marks from marks from sessional examinations)02ive: The objective of the course Mathematical Modellingive: The objective of the course Mathematical Modellingnental principles, techniques, and tools necessary to fd problems using mathematical models. Through this of understanding of mathematical concepts and their applieering, physics, economics, biology, and social science wer students with the ability to approach complex vstematically, and quantitatively, thereby preparing arch, industry, and various other professional fields.ne: By the end of this course:	Course TitleCourse TypeContact HoursMathematicalCompulsoryL3T1ModellingI3T1:nent Methods :As per CUJ norms (60 marks from end marks from sessional examinations)02ive: The objective of the course Mathematical Modelling is mental principles, techniques, and tools necessary to formud d problems using mathematical models. Through this course understanding of mathematical concepts and their application ering, physics, economics, biology, and social sciences. Co wer students with the ability to approach complex real vstematically, and quantitatively, thereby preparing ther arch, industry, and various other professional fields.me: By the end of this course:	Course TitleCourse TypeContact HoursMathematical ModellingCompulsoryL3T1PModellingImage: CompulsoryL3T1PModellingImage: CompulsoryL3T1PImage: CompulsoryImage: CompulsoryL3T1PModellingImage: CompulsoryL3T1PImage: CompulsoryImage: CompulsoryL3T1PImage: CompulsoryImage: CompulsoryImage: CompulsoryImage: CompulsoryImage: CompulsoryImage: CompulsoryImage: Compute Comput	Course TitleCourse TypeContact HoursMathematical ModellingCompulsoryL3T1P0ModellingImage: CompulsoryImage: ComputeryImage: Computery<

- Students will be able to identify, define, and formulate real-world problems using appropriate mathematical abstractions and modelling techniques.
- Students will demonstrate proficiency in a variety of mathematical techniques including differential equations, optimization methods, probability theory, and statistical analysis for developing and solving mathematical models.
- Students will gain a comprehensive understanding of difference equations, including basic concepts concerning matrices, eigenvalues, and eigenvectors. They will be able

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

to apply difference equations to model and analyze iterative processes, particularly in the context of population growth.

- Students will apply ODE models to analyse economic and financial phenomena, including models of economic growth, investment dynamics, and asset pricing models.
- Students will learn techniques for fitting data using polynomial functions and splines. They will understand the advantages and limitations of different curve-fitting approaches and apply them to real-world datasets.
- Students will learn the methodology for conducting simulations, including model development, verification, validation, and experimentation. They will understand the steps involved in building a simulation model and ensuring its accuracy and reliability.
- Students will apply the equation of continuity to model fluid flow phenomena, including incompressible and compressible flows. They will understand how to formulate and solve PDEs representing mass conservation principles in fluid dynamics, models to describe heat flow phenomena using PDEs such as the heat equation. They will analyse heat transfer processes in solids, liquids, and gases and understand concepts such as conduction, convection, and radiation. models to analyse traffic flow dynamics, including congestion, flow rates, and traffic density.

Unit – 1	Introduction to modelling, Mathematical modelling, Types of models,
	Characteristics of Mathematical models, Models on algebraic systems.
	Modelling with Difference Equations: overview of basic concepts concerning
	matrices, eigenvalues and eigenvectors; fixed points, stability and iterative
	processes; applications to population growth.
Unit – 2	Mathematical Models based on Ordinary differential equations, Models based
	on system of ordinary first order differential equations. Motion of satellites,
	Electrical Circuits, A curve and Persuit, Birth & Deaths model, Logistic model
	for growth, Models in Economics and Finance.
Unit – 3	Empirical Modelling with Data Fitting: error function, least squares method;
	fitting data with polynomials and splines. Types of Simulation, Simple Case
	Studies, Simulation methodology, Simulation Software, Criteria for valid and
	Creditable Simulation Models.
Unit – 4	Mathematical models through Partial Differential equations: Equation of
	Continuity in fluid flow, Heat flow and Traffic flow. Diffusion models in air
	pollution, Water pollution, simple models based on heat transfer, mass transfer
	and wave propagation.
Text Books	

1. J.N. Kapoor: Mathematical Modelling, Wiley Eastern Ltd, 1982.

- 2. R. Haberman: Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow, SIAM, 1998.
- 3. M. Braun: *Differential Equations and their Application: An Introduction to Applied Mathematics*, 3rd edition, Springer, 1991.

Page3'

झारखण्ड केन्द्रीय विष्वविद्यालय CENTRAL UNIVERSITY OF JHARKHAND (भारतीय संसद के अधिनियम 2009 द्वारा स्थापित)

(Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- 4. A.M. Law: Simulation Modelling and Analysis, 4th edition, McGraw Hill, 2006.
- 5. R. M. Davies and R. M. O'Keefe: *Simulation Modelling with Pascal*, Prentice Hall 1989.
- 6. F. R. Giordano, W.P. Fox and S. B. Horton: *A First Course in Mathematical Modelling*, 5thedition, Cengage Learning, 2013

Reference Books:

 ${}^{\rm Page}38$

Course Code	Course Title	Course Type		Coi	ntact I	Hour	s		Credit	
MMA215160	Integral	Compulsory	L	3	Т	1	Р	0	4	
	Transforms	y		-				-	-	
Pre-requisite	:				L					
Course Assess	ment Methods :	As per CUJ norr	ns (60 1	narks	from	n end	l sem	ester	and 40	
		marks from session	onal exar	ninati	ions)					
Syllabus	02									
Version :										
Course Obje	ctive: Expose the	basic properties of	integral	trans	sforms	s and	l their	appli	cations	
in science and engineering problems. To describe the ideas of Fourier and Laplace										
Transforms ar	Transforms and indicate their applications in the fields such as application of PDE, Digital									
Signal Proces	Signal Processing, Image Processing, Theory of wave equations, Differential Equations and									
many others and To use Fourier series for solving boundary value problems appearing in										
scientific &	engineering probl	lems. Demonstra	ite their	und	erstan	ding	of	the D	irichlet	
conditions by	using them to eva	aluate infinite serie	es. Recog	gnize	even	and	odd f	unctio	ons and	
use the resulting simplifications for Fourier series and transforms.										
Course Outcome:										
 Have ι 	• Have understanding regarding different kind of integral transforms.									
• Unders	stand Fourier trans	form and its proper	rties and	will l	be abl	e to s	solve	the ex	amples	
based on it.										
• Have d	leep understanding	g of Laplace Transf	ormatior	n and	its rea	l life	appl	icatio	1.	
• Solve	initial value proble	m and boundary va	alue prob	olem u	using	Lapla	ace T	ransfo	rm.	
• Derive	Fourier series rep	resentation of Perio	odic func	ctions						
• Able to	o deal with probler	ns in applied mathe	ematics i	n scie	ence a	nd ei	ngine	ering.		
• Able t	o apply integral tr	ransforms to bound	dary and	liniti	al val	ue p	roblei	ns in	ODE's	
and PI	DE's.									
• Able to	o present his/her ca	alculations in a man	nner that	is rea	adily i	ntell	igible			
• Able to	o approach more a	dvanced aspects of	transfor	m me	thods	•				
Unit – 1	Laplace Transfo	rm: Definition, T	ransform	n of	some	eler	nenta	ry fu	nctions,	
	rules of manipulat	ion of Laplace Tra	nsform, '	Trans	form	of D	erivat	ives,	relation	
	involving Integrals	s, the error function	n, Transf	form	of Be	ssel f	functi	ons, F	Periodic	
	functions, convolu	tion of two functio	ns.							
Unit – 2	Inverse Laplace T	ransform of simpl	e functio	on, Ta	auberi	an T	heore	ems, S	olution	
	of Differential Ed	quations- Initial v	alue pro	oblem	s for	line	ar eq	uation	ns with	
	constant coefficient	nts, two-point bou	ndary va	lue p	robler	n fo	r a lii	near e	quation	
	with constant c	coefficients, linea	r diffei	rentia	l equ	uatio	n w	ith v	ariable	
	coefficients, simu	Iltaneous different	ial equa	tions	with	con	stant	coeff	ficients,	

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	Solution of diffusion and wave equation in one dimension and Laplace											
	equation in two dimensions.											
Unit – 3	Fourier Series and Fourier Transforms: Orthogonal set of functions, Fourier											
	series, Fourier sine and cosine series, Half range expansions, Fourier integral											
	Theorem, Fourier Transform, Fourier Cosine Transform, Fourier Sine											
	Transform, Transforms of Derivatives, Fourier transforms of simple Functions,											
	Fourier transforms of Rational Functions, Convolution Integral, Parseval's											
	Theorem for Cosine and Sine Transforms, Inversion Theorem, , Solution of											
	Partial Differential Equations by means of Fourier Transforms. First order and											
	second order Laplace and Diffusion equations.											
Unit – 4	Laplace Transform: Definition, Transform of some elementary functions,											
	rules of manipulation of Laplace Transform, Transform of Derivatives, relation											
	involving Integrals, the error function, Transform of Bessel functions, Periodic											
	functions, convolution of two functions.											
Text Books:												
1. Ian N	. Sneddon, The use of Integral Transforms, McGraw Hill; 2 nd edition, 1972.											
2 Ian N	Speddon Fourier Transforms Dover Publications 2010											

- 2. Ian N. Sneddon, Fourier Transforms, Dover Publications, 2010.
- 3. Loknath Debnath, Integral Transforms and their applications, Chapman and Hall/CRC; 2nd edition, 2006.
- 4. R. K. Jain, S. R. K. Iyengar : Advanced Engineering Mathematics, 5th Edition, Narosa, 2016.
- 5. Murray Spiegel: Schaum's Outlines of Laplace Transform, 1965.
- 2. Murray Spiegel: Schaum's Outlines of Fourier Analysis with Applications to Boundary Value Problems, 1974.

Reference Books:

 $_{\rm Page}39$

Course Code	Course Title	Course Type	Contact Hours Credit							
MMA215170	Numerical	Compulsory	L	3	Т	1	Р	0	4	
	Optimization									
	Techniques									
Pre-requisite	:									
Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40								and 40		
		marks from session	onal exam	minat	ions)					
Syllabus	02									
Version :										
Course Object	tive: The course	aims to provide s	students	an ex	perie	nce	of m	athem	atically	
formulating a la	arge variety of op	timization/decision	n proble	ms en	nergir	ng ou	it of v	variou	s fields	
like data scien	ce, machine learr	ning, business and	finance	. The	cours	se fo	cuses	s on 1	earning	
techniques to o	ptimize the proble	ems in order to obta	ain the b	est po	ssible	e solı	ition.		_	
Course Outcome: The Student will be able to:										
Mathematics	• Mathematically formulate the entimization problems using the required number of									

- Mathematically formulate the optimization problems using the required number of independent variables.
- Define constraint functions on a problem.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

• Check the feasibility and optimality of a solution.

Apply conjugate gradient method to solve the problem

Unit – 1	ntroduction: Optimization, Types of Problems and Algorithms. Convex Sets								
	and Convex Functions, Unconstrained Optimization: Basic properties of								
	solutions and algorithms, Global convergence,								
Unit – 2	Basic Descent Methods: Line Search Methods, and Newton Methods, Modified								
	Newton methods, Gradients methods, Steepest Descent								
Unit – 3	Globally convergent Newton Method. Nonlinear Least Squares Problem and								
	Algorithms, Conjugate Direction Methods, Trust-Region Methods.								
	Lab Component: Exposure to Matlab/Mathematica and computational								
	experiments based on the algorithms discussed in the course.								

Text Books:

- E.K.P. Chong and S.H. Zak: An Introduction to Optimization, 2nd edition, Wiley, 2010.
 R. Fletcher: Practical Methods of Optimization, 2nd edition, Wiley, 2000.
- S. S. Rao: *Engineering Optimization: Theory and Practice*, 4th edition, Wiley, 2009.
 D. Luenberger and Y. Ye: *Linear and Nonlinear Programming*, 3rd edition, Springer,
- 2008.
- 5. M.S. Bazaraa et al.: Nonlinear Programming Theory and Algorithms, 3rd edition, Wiley, 2006.

Reference Books:

Semester-IV

Course Code	Course Title	Course Type	Contact Hours Cree							
MMA221040	Optimization	Compulsory	L	3	Т	1	Р	0	4	
	Techniques									
Pre-requisite	•									
Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40								and 40		
marks from sessional examinations)										
Syllabus	02									
Version :										
Course Objective: Linear programming deals with the problem of optimizing a linear										
objective funct	tion subject to	inear equality and	d inequa	ality	consti	raints	s on	the d	lecision	
variables. Lines	ar programming	has many practica	l applic	ations	(e.g.	assi	gnme	nt pro	oblems,	
transportation,	problems, proc	luction planning	problem	ns, et	c). (One	aspec	et of	linear	
programming th	hat is often forgo	tten is the fact that	t it is als	so a u	seful	proo	f tech	nique	. In the	
beginning chap	oter, we study s	ome linear progra	amming	form	ulatio	ons f	or so	me c	lassical	
problems. Later	problems. Later we see that linear programming problems can be expressed in a variety of									
equivalent ways	5.									
Course Outco	Course Outcome: After completion of this course students can formulate the optimization									

problems in LPP and then maximize (or, minimize) the profit (or, cost) of a general class of problems by using Graphical, the Simplex, Dual Simplex, Two-Phase, Big-M method. Also, students can able to minimize the transportation costs by using, the North-West corner rule,

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Least-Cost, and Vogel's approximation method. Furthermore, the queuing models are very helpful for determining how to operate a queuing system in the most effective way if too much service capacity to operate the system involves excessive cost. The queuing models enable to finding an appropriate balance between the cost of service and amount of waiting. Unit – 1 **Linear Programming:** Introduction, Linear Programming Problem (LPP) and its formulation, Graphical method for solving LPP, Basic Feasible Solution, Simplex Method, Big-M and Two-phase methods, Degeneracy, Alternative Optimal Solution, Unbounded Solution, Infeasible Solution, Dual Problem and Duality Theorems, Dual Simplex Method and its application in post-optimality analysis. Transportation and Assignment Problems: Introduction, Transportation Unit -2algorithm, Mathematical formulation, Balanced and Unbalanced Transportation Problems, Vogel's approximation method for solving Transportation Problems, Hungarian method for solving Assignment Problems. Queueing and Inventory Theory: Introduction, Queueing System, Elements Unit -3

Unit – 3 **Queueing and Inventory Theory:** Introduction, Queueing System, Elements of a Queueing System, Operating Characteristics, Probability distributions in Queueing Systems, Elementary Queueing and Inventory Models, Steady-state solutions of Markovian Queueing Models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1.

Text Books:

- 1. E.K.P. Chong and S.H. Zak: An Introduction to Optimization, 2nd edition, Wiley, 2001.
- 2. D.G. Luenberger, Y. Ye: Linear and Nonlinear Programming, 3rd edition, Springer, 2008.
- 3. A.Ravindran, K.M. Ragsdell, G.V. Reklaitis: Engineering Optimization, 2nd edition, Wiley, 2006.
- 4. H.A. Taha: Operations Research: An Introduction, 8th edition, Prentice Hall, 2007.
- 5. K. Swarup, P. K. Gupta and M. Mohan: Operations Research, Sultan Chand and Sons, 2004.

Reference Books:

			1							
Course Code	Course Title	Course Type	Contact Hours Cree							
MMA221050	Number	Compulsory	L	3	Т	1	Р	0	4	
	Theory									
Pre-requisite	•									
Course Assessment Methods : As per CUJ norms (60 marks from end semester and 40										
marks from sessional examinations)										
Syllabus	02									
Version :										
Course Object	tive: The course a	aims to give eleme	ntary ide	eas fro	m nu	mbei	theo	ry wh	ich will	
have applicatio	have applications in cryptology. Identify and apply various properties of and relating to the									
integers including the Well-Ordering Principle, primes, unique factorization, the division										
algorithm, and	algorithm, and understand the concept of quadratic congruence. Prime power module and									

primitive roots may help to improve the existing algorithm for primality testing and prime

factorization problem which is highly applicable in coding theory and cryptography to develop This course also covers Euler's, Lagrange, and Wilson theorems, Euler's criteria,

 $_{Page}41$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Legendre symbol, Law of quadratic reciprocity; neither Euler nor Legendre were able to prove this but Gauss, Pell's equation.

Course Outcome: After completing the course, students will be able to solve the elementary number theory problems and they can apply elementary number theory to cryptography. Students develop a deeper conceptual understanding of the theoretical basis of number theory and identify how number theory is related to and, used in cryptography. Students learn the Legendre symbol and use it to prove the Euler criterion, Furthermore, students also use Euler's criterion to prove some nice properties of the Legendre symbol. Students may also be able to understand solutions of Pell's equation and how Gauss was able to prove the Quadratic Reciprocity law.

Unit – 1	Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese
	Remainder Theorem, Euler's Ø- function, primitive roots, Fermat's Little, Euler
	and Wilsons Theorem.
Unit – 2	Linear Congruence, Algebraic congruences of degree. Theorems on Prime
	Power, Modulus, Lagrange Theorem, Quadratic Congruences, Quadratic
	reciprocity law, Two Square Theorem, Primality Testing, and Factoring.
Unit – 3	Simple continued fractions Pell's Equation Diophantine

- Jnit 3 Simple continued fractions, Pell's Equation, Diophantine Approximation. Arithmetical functions. Sum and number of Divisors, Dirichlet Product, Mobius inversion formula, Totally multiplicative functions.
- Text Books:
- 1. G.H. Hardy and E.M. Wright: An Introduction to The Theory of Numbers, 6th edition, Oxford University Press, 2008.
- 2. D.M. Burton: Elementary Number Theory, 6th edition, McGraw-Hill, 2005.
- 3. I. Niven, H.S. Zuckerman and H.L. Montgomery: An Introduction to The Theory of Numbers, 5th edition, Wiley, 1991.
- 4. T. M. Apostol: Introduction to Analytic Number Theory, Springer- Verlag, 1976.

Reference Books:

Electives of Semester IV

Course Code	Course Title	Course Type	Contact Hours Credit						
MMA 226050	Artificial	Compulsory	L	3	Т	1	Р	0	4
	Intelligence								
	and Hybrid								
	Systems								
Pre-requisite	:								
Course Assessment Methods : As per CUJ norms (60 marks from end				l sem	ester	and 40			
		marks from session	onal exai	ninati	ons)				
Syllabus	02								
Version :									
Course Object	ive: This course	deals with an intro	duction	to the	basic	prin	ciples	s, tech	niques,
and applications of Artificial Intelligence and Hybrid System. Coverage includes knowledge									
of AI and hybrid system basics, applications and case studies of AI and ML in pharmacy,									

Theoretical models, use-cases, fundamental programming application of AI and ML in

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

pharma datasets, statistical and probabilistic analysis. Foundation to the AI and Machine learning will be provided to the students.

Course Outcome: Upon successful completion of the course, the students will be able to

- Solve basic AI based problems.
- Select appropriately from a range of techniques when implementing intelligent systems.
- Apply principles of AI in solutions that require problem solving, inference, perception.
- Implement algorithms on simple and complex decision making.
- Apply AI techniques to real-world problems to develop intelligent systems.

Unit – 1	Artificial Intelligence: Overview of AI, Knowledge representation, Mappings,
	Approaches and issues, Predicate logic, Propositional logic, Procedural and
	declarative knowledge.
	Fuzzy Logic: Fuzzy Sets, Fuzzy Relations, Fuzzy operations (on fuzzy sets),
	Fuzzy numbers and arithmetics, Fuzzy Logic and Possibility Theory.
	Problem space and searching techniques (Algorithms and Problem
	Practices): Heuristic search technique (s), State Space Search, Graph Search,
	Search Based on Recursion, Pattern-directed Search.
Unit – 2	Machine Learning: Introduction, training data, function approximation,
	Learning Input-Output Functions, Performance Evaluation.
	Learning (Algorithms and Problem Practices): Decision Tree based, Error
	correction learning, Supervised, Unsupervised, Hebbian learning, Clustering,
	K-Means Clustering, Credit assignment problem, Bayes Theorem and
	Classification.
Unit – 3	Intelligent Systems: Introduction, Cognitive Science, Expert Systems, Stages
	in the Development, Probability-based Expert Systems, Example of Chess
	game (Practice with 8-Queens problem).
Unit - 4	Artificial Neural Networks: Neural network, human brain, model of an
	artificial neuron, mathematical preliminaries, taxonomy of NN, classical
	artificial intelligence and neural network.
	Artificial Neural Network: Feed-forward network, Feed-backward network,
	Recurrent Network, Single Layer and Multi-layer Networks, Perceptron
	(example of Rosenblatt perception)
	Single layer Perceptrons (Algorithmis and Problem Plactices). Adaptive
	algorithm parcentron convergence theorem
	Multilaver Percentrons: Back propagation algorithm XOR problem output
	representation and decision rule back propagation and differentiation
	Geometry of Binary Threshold Neurons: Pattern recognition and data
	classification convex sets convex hulls and linear separability space of
	Boolean functions binary neurons are pattern dichotomizers non-linear
	separable problems, capacity of a simple threshold logic neurons. Re-visiting
	the XOR problem.
	·
Unit – 5	Hybrid systems, Decision Making Systems, Neuro- fuzzy systems

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Text Books:

- 1. Elaine Rich, Kevin Knight & Shivashankar B. Nair: Artificial Intelligence, 3rd Edition, Mc-Graw Hill, 2017.
- 2. Dan W. Patterson: Introduction to Artificial Intelligence and Expert Systems, First Edition, 2015.
- 3. G. J. Klir & B. Yuan, Fuzzy Sets & Fuzzy Logic Theory and Applications, 2nd Edition, Pearson, 2015.
- 4. Nils J. Nilsson, Introduction To Machine Learning, 2014.
- 5. C. M. Bishop: Pattern Recognition and Machine Learning, Springer, Reprint of the Original 1st Edition, Springer, 2016.
- 6. S. Kumar: Neural Networks: A Classroom Approach, 2nd Edition, Tata McGraw-Hill, 2017.
- 7. Da Ruan: Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, And Genetic Algorithms, Springer 1997.

Reference Books:

0 0 1	O T: 1	<u>с</u> т		0		T		ı	0 1
Course Code	Course little	Course Type		Cor	itact I	lour	3		Credit
MMA226060	Algebraic	Compulsory	L	3	Т	1	Р	0	4
	Number								
	Theory								
Pre-requisite	:								
Course Assessn	nent Methods :	As per CUJ norr	ns (60 1	marks	from	end	sem	ester	and 40
	marks from sessional examinations)								
Syllabus	02								
Version :	Version :								
Course Objective: The objective of the course "Algebraic Number Theory" is to provide									
students with a deep understanding of the algebraic structure of number fields and the									
properties of al	gebraic numbers.	Algebraic number	theory s	serves	as a l	oridg	e bet	ween	algebra
and number the	ory, exploring th	e arithmetic proper	rties of a	ılgebr	aic ob	jects	such	as al	gebraic
integers and a	lgebraic extension	ons of the ration	al numł	bers.	Study	ing	the p	proper	ties of
algebraic intege	ers, which are ro	ots of monic polyr	nomials	with i	ntege	r coe	fficie	nts. S	tudents
will learn abou	t unique factoriza	ation, prime factor	ization,	and a	rithm	etic o	operat	ions i	n rings
of algebraic in	ntegers. Students	s will explore pr	operties	of r	ings	of in	itegei	s, in	cluding
finiteness, integ	grality, and facto	rization properties	. Investi	igatin	g fact	oriza	tion	prope	rties in
algebraic num	ber fields, inc	cluding unique	factoriza	tion,	prim	ne f	actori	zatior	ı, and
decomposition	of prime ideals. S	Students will learn	about Fe	ermat'	s Last	The	orem	and it	s proof
using technique	using techniques from algebraic number theory, including elliptic curves and modular forms.								
Course Outcon	Course Outcome: By the end of this course:								

• Students will have a comprehensive understanding of algebraic numbers, which are roots of polynomial equations with integer coefficients, and algebraic integers, which are roots of monic polynomial equations with integer coefficients. They will learn

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

about the algebraic properties of these numbers and their significance in number theory and algebraic geometry.

- Students will study algebraic number fields, which are extensions of the rational numbers obtained by adjoining algebraic numbers. They will understand the structure and properties of algebraic number fields, including degree, discriminant, and ring of integers.
- Students will explore the group of units in an algebraic number field, which consists of all invertible elements in the field under multiplication. They will learn about the structure and properties of the group of units, including its connection to the group of roots of unity and its role in algebraic number theory.
- Students will investigate divisibility in quadratic fields, which are algebraic number fields obtained by adjoining the square root of a rational number. They will learn about the arithmetic properties of quadratic fields, including factorization of primes, class number, and discriminant.
- Students will gain a comprehensive understanding of ideals, divisors, and factors in algebraic number fields. They will learn about the basic properties of ideals, including generation, containment, and factorization, and their applications in algebraic number theory. Students will learn about the Fermat Conjecture.

Unit – 1	Algebraic Numbers and Algebraic Integers, Algebraic Number Fields, Integral								
	Basis and Discriminant, Ring of Integers in an Algebraic Number Field (with								
	xplicit calculations for Quadratic & Cyclotomic fields)								
Unit – 2	Divisibility in Algebraic Number Fields, Euclidean Fields, Group of Units in								
	an Algebraic Number Field, Divisibility in Quadratic Fields.								
Unit – 3	Ideals, Divisors and Factors, Fundamental Theorem of Ideal Theory, Fractional								
	Ideals, Inverse of an Ideal, Congruences, Norm of an Ideal, The problem of								
	ramification, Class numbers, The Fermat conjecture.								
T + D = 1									

Text Books:

- 1. Harry Pollard, Harold G. Diamond: The Theory of Algebraic Numbers, 3rd edition, Dover, 2010.
- 2. S. Alaca, K. S. Williams: Introductory Algebraic Number Theory, CUP, 2003.
- 3. E. Weiss: Algebraic Number Theory, Dover, 1998.
- 4. Stewart, D. Tall: Algebraic Number Theory and Fermat's Last Theorem, 3rd edition, A K Peters/CRC Press, 2001.
- 5. G. J. Janusz: Algebraic Number Fields, 2nd edition, 1996.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours						Credit
MMA226070	Statistics III	Compulsory	L	3	Т	1	Р	0	4
Pre-requisite	:								

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Course Assess	ment Methods :	As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations)
Syllabus	02	· · · · · · · · · · · · · · · · · · ·
Version :		
Course Obje	ctive: To impart	knowledge on Statistical concepts like Data Collection,
Measures of	Central Tendency	and Dispersion, Probability and Distributions, Statistical
Methods, Infe	erence, Sampling	methods, Experimental Designs, Economical and Vital
Statistics, SQC	C, reliability and (Operations Research and To make the students to understand
the needs of S	Statistics and Actu	arial Science in Science, Technology and various industries
like manufactu	iring, construction	, insurance, IT, etc.
Course Outco	ome:	
Unders	stand different sam	pling methods.
• Apply	different sampling	methods to real world.
• Apply	clustering samplin	g to real problems.
 Interpr 	et analysis of vari	ance tables and other statistical summaries in the context of
the aim	is of the experime	nt.
Design	and analyse facto	rial experiments for investigating multiple factors.
• Determ	line the sample s	size required to meet a required level of accuracy for an
experir	nent.	
• Identif	y and apply the	he basic principles of experimental design, including
randon	isation, replicatio	n and control.
Manipi	ulate and present e	experimental data using appropriate statistical tools.
Use ap	propriate software	to analyse experimental data.
Onit - 1	sampling Theory	Matheda of Collecting Drimony data Sample, Primary
	and Secondary da Sompling design	ata, Methods of Conecting Primary data, Sampling frame,
Unit 2	Sampling design.	complexize Conque and Comple Surveys Compling and Non
Umt - 2	Determination of s	Sample Size, Census and Sample Surveys, Sampling and Non-
	Sampling Proba	bility Droportional to Size (DDS) Sampling, Datio and
-	Barrassian Matha	ds of Estimation
Unit 2	Design and Ana	us of Experiments: Introduction Analysis of Variance
OIIII - 3	$(\Lambda NOV\Lambda)$ and Λn	alysis of Covariance (ANCOVA) Fixed Random and Mixed
	(ANOVA) and An effects Models Al	MOVA for one-way and two-way Classified Data
Unit_1	Basic principles (of Design of Experiments, Completely Randomized Design
OIIII - 4	(CRD) Randomir	red Block Design (RBD) and Latin Square Design (LSD)
	Eactorial Experim	ents Confounding in symmetrical factorial experiments (2^n)
	series) Connecte	dness and Orthogonality of Block Designs Balanced
	Incomplete Block	Design (BIRD)
Text Books		
1. W G O	Cochran: Samplin	Techniques John Wiley and Sons 3 rd Edition 1977
2. PVS	Sukhatme B V	Sukhatme S Sukhatme & C Ashok · Sampling Theory of
Survey	s with Applicati	ons. Iowa State University Press and Indian Society of
Agricu	Itural Statistics N	ew Delhi, 1984.
3 W G	Cochran & D R (Tox : Experimental Designs John Wiley 1992

- Cochran & D. R. Cox : Experimental Designs, John Wiley, 1992.
- 4. D. C. Montgomery: Design and Analysis of Experiments, John Wiley and Sons, 10th Edition, 2019.
- 5. S.C. Gupta and V.K. Kapoor: Fundamentals of Applied Statistics, Sultan Chand and Sons, 1994.

 $_{\rm Page}46$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

6. M.N. Das and N.C. Giri: Design and Analysis of Experiments, New Age Publication, 2nd Edition, 1986.

Reference Books:

Course Code	Course Title	Course Type		Credit					
MMA206080	Difference	Compulsory	L	3	Т	1	Р	0	4
	Equations								
	and Discrete								
	Dynamical								
	Systems								
Pre-requisite	:								
Course Assessm	nent Methods :	As per CUJ norms (60 marks from end semester and 40							and 40
		marks from session	onal exar	ninati	ons)				
Syllabus	02								
Version :									

Course Objective: The objective of the course "Difference Equations and Discrete Dynamical Systems" is to provide students with a thorough understanding of the theory and applications of difference equations and discrete dynamical systems. Difference equations play a crucial role in modelling and analyzing discrete-time dynamical systems, which arise in various fields such as mathematics, engineering, physics, biology, and economics. By achieving these objectives, students will be well-equipped to analyze, model, and solve problems involving difference equations and discrete dynamical systems in various disciplines. They will possess the knowledge, skills, and analytical tools necessary to make meaningful contributions to research, industry, and academia in dynamical systems theory and its applications.

Course Outcome:

 $_{Page}47$

By the end of this course:

- Students will have a comprehensive understanding of difference equations and their role in modeling discrete-time dynamical systems. They will learn about the discrete nature of difference equations and their applications in various fields.
- Students will learn various solution techniques for first-order difference equations, including analytical methods such as iteration, recursion, and generating functions, as well as numerical methods such as finite differences and numerical integration.
- Students will explore the group of units in an algebraic number field, which consists of all invertible elements in the field under multiplication. They will learn about the structure and properties of the group of units, including its connection to the group of roots of unity and its role in algebraic number theory.
- Students will explore fixed points and periodic points in both discrete and continuous

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

dynamical systems. They will learn how to characterize these points and analyze their stability using linearization techniques and qualitative methods.

• Student will study chaos in discrete and continuous dynamical systems, including the concept of sensitive dependence on initial conditions and the existence of chaotic attractors. They will learn how to compute Lyapunov exponents and identify chaotic behavior in dynamical systems.

Unit – 1	Difference Equations: Introduction to Difference Equations, First order DEs,
	linear equations with constant coefficients, variable coefficients, stability in
	both hyperbolic and nonhyperbolic cases, bifurcations, symbolic dynamics and
	chaos, linear theory for two dimensional systems of difference equations,
	equilibria, stability, periodic solutions, period-doubling bifurcation, Lyapunov
	numbers, box dimension, stable and unstable manifolds, area preserving maps,
	systems with order higher than 2, numerical issues in difference equations.
Unit – 2	Discrete Dynamical Systems: Discrete and continuous dynamical systems,
	One and two dimensional maps as discrete dynamical systems, Fixed points,
	periodic points and stability, Chaos, Lyapunov exponents and chaotic

attractors, Differential equations as continuous dynamical systems, Periodic orbits and limit sets, Bifurcations.

Text Books:

- 1. S. Goldberg: Introduction to difference Equations, Dover, 1986.
- 2. K.T. Alligood, T.D. Sauer and J.A. Yorke: An Introduction to Dynamical Systems, Springer, 1997.
- 3. E. Ott: Chaos in Dynamical Systems, Cambridge University Press, 2nd edition 2002.
- 4. S.H. Strogatz: Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry and Engineering, Westview Press, 2000.
- 5. S. Elaydi: An Introduction to Difference Equations, Springer, 1995.
- 6. W.G. Kelley and A.C. Peterson: Difference Equations An Introduction with Applications, 2nd edition, AP, 2001.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours Cre						
MMA206090	Coding	Compulsory	L	3	Т	1	Р	0	4
	Theory								
Pre-requisite	:								
Course Assessm	nent Methods :	As per CUJ norms (60 marks from end semester and 40							
		marks from session	onal exar	ninati	ions)				
Syllabus	02								
Version :									
Course Objective: The objective of the course "Coding Theory" is to provide students with a									
comprehensive understanding of the principles, techniques, and applications of coding theory									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

in the design and analysis of error-correcting codes. Coding theory plays a crucial role in various fields, including telecommunications, data storage, cryptography, and information theory. Techniques for error detection and correction in digital communication systems, data storage devices, and transmission channels will be discussed. Explaining the theory behind linear codes and their representation using matrices. Students will learn about generator matrices, parity-check matrices, and how to encode and decode linear block codes using matrix operations. Also it the discussion on BCH bound, Encoding decoding of cyclic codes, Hamming and Golay codes as cyclic codes, BCH codes, Reed-Soloman codes, Quadratic residue codes, Graphical codes, Convolutional codes.

Course Outcome:

 $P_{age}49$

By the end of this course students will:

- Have a comprehensive understanding of communication channels and their characteristics, including noise, distortion, and error propagation. They will learn about the challenges and limitations of transmitting information over communication channels and the need for error control techniques.
- Learn about the coding problem in communication theory, which involves designing efficient and reliable encoding and decoding schemes to mitigate errors introduced by noisy communication channels. Also it includes block codes, which are error-correcting codes that operate on fixed-size blocks of data.
- Have a comprehensive understanding of Hamming codes, which are a class of linear error-correcting codes. They will study Golay codes, Reed- Muller code which are optimal binary linear codes with high error-correcting capabilities. They will study different kinds of bounds involved in coding theory.
- Comprehend the applications of algebra in coding theory and study some special codes like BCH bound, Encoding decoding of cyclic codes, Hamming and Golay codes as cyclic codes, BCH codes, Reed-Soloman codes, Quadratic residue codes, Graphical codes, Convolutional codes.

-	
Unit – 1	The Communication Channel, The coding problem, Block codes, Hamming
	metric, Nearest neighbour decoding, Linear codes, Generator and parity check
	matrices, dual codes, Standard array decoding, Syndrome decoding,
	Permutation equivalent codes.
Unit – 2	Hamming codes, Golay codes, Reed-Muller codes, Codes derived from
	hadamard matrices.
	Bounds on codes: $A_q(n, d)$ and $B_q(n, d)$, sphere packing bound, covering
	radius and perfect codes. Singleton bound and MDS codes, Gilbert lower
	bound and Varshamov lower bound, Plotkin bound.
Unit – 3	Finite fields, cyclotomic cosets and minimal polynomials. Cyclic codes:
	factoring $x^n - 1$, basic theory of cyclic codes, Generator polynomial and check
	polynomial, minimum distance of cyclic codes.
	BCH bound, Encoding decoding of cyclic codes, Hamming and Golay codes as

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

cyclic codes, BCH codes, Reed-Soloman codes, Quadratic residue codes, Graphical codes, Convolutional codes.

Text Books:

- 1. W.C. Huffman and V. Pless: Fundamentals of Error-correcting Codes, Cambridge University Press, 2003.
- 2. S. Ling and C. Xing: Coding Theory A First Course, Cambridge University Press, 2004.
- 3. E. R. Berlekamp: *Algebraic Coding Theory*, Aegean Park Press, 1984.
- 4. J. H. Van Lint: Introduction to Coding Theory, 3rd edition, Springer, 1999.
- 5. R. Roth: Introduction to Coding Theory, Cambridge University Press, 2006.
- 6. S. Roman: Introduction to Coding and Information Theory, Springer-Verlag, 1997

Reference Books:

Course Code	Course Title	Course Type		Co	ntact I	Hour	S		Credit		
MMA 226100	Operator	Compulsory	L 3 T 1 P 0						4		
	Theory										
Pre-requisite	Pre-requisite :										
Course Assessm	nent Methods :	As per CUJ norn	ns (60 1	marks	from	n enc	l sem	ester	and 40		
		marks from session	onal exai	ninati	ions)						
Syllabus	02										
Version :											
Course Object	ive:										
Students would	d typically learn	the theoretical for	oundation	ns of	linea	ir op	erator	rs wh	ich are		
nothing but lin	ear mappings fr	om one vector spa	ace to a	vecto	or spa	ice. '	They	woul	d study		
properties of op	perators, techniqu	ues for analyzing s	pectra, a	ind m	ethod	s for	solvi	ing eq	uations		
involving operation	ators. Spectral th	eory deals with the	e decom	positi	on of	ope	rators	into	simpler		
components, su	uch as eigenvalu	es and eigenvecto	rs, and	the s	tudy	of th	ie spe	ectrun	n of an		
operator, which	n includes its po	oint spectrum, con	tinuous	specti	rum, a	and	residu	ial sp	ectrum.		
They would al	so know about r	nonlinear operators	variatio	onal i	nequa	litite	s, co	mplin	nentarty		
problems. Som	e applications in	the field of quantur	n mecha	nics,	differ	entia	l equa	ations	, partial		
differential equ	ations, signal pro	cessing, and contro	ol theory	will a	also b	e cov	red				
Course Outcon	me: The Student	will be able to:									
Learn techniqu operator	• Learn the theoretical foundations of linear operators, properties of operators, techniques for analyzing spectra, and methods for solving equations involving operators.										
• Learn how to decompose operators into simpler components, such as eigenvalues and eigenvectors, and the study of the spectrum of an operator, which includes its point spectrum continuous spectrum and residual spectrum											
 Learn about nonlinear operators' variational inequalitites, complimentarty problems. Learn some applications in the field of quantum mechanics, differential equations, partial differential equations, signal processing, and control theory etc 											

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Unit – 1	Linear Operators, self-adjoint operators and compact operators.							
Unit – 2	Eigenvalues, Eigenvectors, Spectrum, spectral theorem, Sturm-Liouville systems, and the Fredoholm alternative.							
Unit – 3	Nonlinear operators, variational inequalitites, complimentarty problems.							
Text Books:								
1. B. Ch	oudhary and S. Nanda: Functional Analysis with Applications, Wiley, 1989.							
2. E. Kr	2. E. Kreyszig: Introductory Functional Analysis with Applications, Wiley, 1978.							
3. N. Du	3. N. Dunford and J. T. Schwartz: Linear Operators, Part I-III, Wiley, 2009.							
4. G. Bachman and L. Narici: Functional analysis, AP, 1966.								

Reference Books:

Page 51

Course Code	Course Title	Course Type	Contact Hours Cred							
MMA 226110	Operating	Compulsory	L	3	Т	0	Р	1	4	
	Systems									
Pre-requisite :										
Course Assess	ment Methods :	As per CUJ nor	ms (60 1	narks	from	enc	l sem	ester	and 40	
	marks from sessional examinations)									
Syllabus	02									
Version :										
Course Obje	ctive: This course	e Operating System	ns is an	esse	ntial j	part	of an	y Co	nputer-	
Science educa	tion. The objecti	ve of this course	is to ur	nderst	and t	he n	necha	nisms	of the	
Operating Sy	stems like Pro	ocess Managemen	nt, Proe	cess	Sync	hron	izatic	on, N	/lemory	
Management,	File System Imp	lementation, Stora	ge Struc	tures	used	in (DS ar	nd Pro	otection	
Principles. Ho	w effectively the	OS is utilizing the	ne CPU	resou	irces	with	the 1	nelp c	of these	
mechanisms.										
Course Outco	me: After compl	eting this course, th	ne studer	nt will	be at	ole to)			
Contro	l access to a comp	outer and the files the	nat may l	be sha	red					
Demor	strate the knowle	dge of the compon	ents of c	ompu	ter an	d the	eir res	spectiv	ve roles	
in com	puting.									
 Recogn 	nize and resolve us	ser problems with s	standard	opera	ting e	nviro	onmei	nts		
• Gain p	ractical knowledg	ge of how program	nming la	angua	ges, o	opera	ting	syster	ns, and	
archite	ctures interact and	how to use each e	ffectivel	y.						
Unit – 1	Introduction to Op	erating Systems, E	volution	, Туре	es of (OS. I	Proces	sses: (Concept	
	of processes, pr	ocess scheduling,	operati	ons	on p	roces	sses,	co-op	perating	
1	processes, interpr	ocess communica	tion. Ov	vervie	w of	Th	reads,	bene	efits of	
1	threads, CPU sche	eduling Criteria, So	cheduling	g Alg	orithn	ns (F	CFS,	SRTI	N, RR),	
	Algorithm evalua	tion. Process Sy	ynchroni	zatior	n, cri	tical	secti	on p	roblem,	
	critical region, cla	ssical problems of	synchro	nizati	ion, s	emap	ohores	s. Dea	dlocks:	
]	Deadlock characte	rization, Methods	to handle	e dead	llocks	, dea	dlock	(prev	vention,	
	avoidance, detecti	on, recovery).								
Unit – 2	Memory Manage	ement, logical v	s. phys	ical	addre	ess	space	, sw	apping,	
	contiguous mem	ory allocation, pa	aging, s	egme	ntatio	n, s	egme	ntatio	n with	

झा.के.वि.,ग्राम-चेड़ी-मनातू,पोस्ट-कमरे,कांके, रांची-८३५२२२ /CUJ, Vill.-Cheri-Manatu, Post- Kamre, Kanke, Ranchi – 835 222

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	paging. Virtual Memory, demand paging, performance, page replacement, page replacement algorithms (FCFS, LRU), allocation of frames, thrashing, Concept
	of Cache Memory.
Unit – 3	File System concepts, access methods, directory structure, file system structure,
	allocation methods (contiguous, linked and indexed) and free-space
	management. Disk Management: disk structure, disk scheduling (FCFS, SSTF,
	SCAN, C-SCAN). Protection and Security.
1. Text	Books: A. S. Tanenbaum: Operating System Design and Implementation, 3 rd
Editi	on, Pearson Education India, 20015.
2. A. Si	lberschatz, G. Gagne and P.B. Galvin: Operating System Concepts, 8 th Edition,
Wile	у, 2017.
3. D. N	I. Dhamdhere: Operating Systems - A Concept Based Approach, 3 rd Edition,
McG	raw Hill Education, 2017.
4. W. S [*]	tallings: Operating Systems: Internals and Design Principles, 6 th Edition, Pearson
Educ	ation, 2008.
5. S. Da	s: Unix: Concept and Application, 4 th Edition Tata McGraw-Hill, 2017.

Reference Books:

 ${}^{\rm Page}52$

Course Code	Course Title	Course Type		Coi	ntact I	Hour	S		Credit
MMA 226120	Relational	Compulsory	L	3	Т	0	Р	1	4
	Database								
	Management								
	Systems								
Pre-requisite	•	1							
Course Assessm	nent Methods :	As per CUJ norr	ns (60 1	narks	from	n end	d sem	ester	and 40
	1	marks from session	onal exar	ninati	ions)				
Syllabus	02								
Version :									
Course Objec	tive: The object	ive of the course	is to pro	esent	an in	trod	uction	to d	atabase
management s	ystems, with an	emphasis on ho	w to or	rganiz	ze, m	ainta	in ar	nd ret	rieve -
efficiently, and	effectively - info	rmation from a DB	MS.						
Course Outcon	me: Upon succes	sful completion of	this cou	rse, st	tudent	s sh	ould b	e able	e to:
 Describ 	e the fundamenta	l elements of relation	onal data	abase	mana	gem	ent sy	stems	
 Underst 	and the basic con	cepts and the appli	cations of	of data	abase	syste	ems.		
 Explain 	the basic cond	cepts of relational	data r	nodel	, enti	ty-re	elatior	nship	model,
relation	al database design	n, relational algebra	a and SQ	QL.					
• Design	ER-models to rep	present simple datal	base app	licatio	on sce	nario	OS		
Convert	the ER-model to	relational tables,	populate	relat	ional	datal	base a	nd fo	rmulate
SQL qu	eries on data								
Familia	Familiar with basic database storage structures and access techniques: file and page								nd page
organiza	ations, indexing n	nethods including I	B tree, ar	nd has	shing		-		
Unit -1 Γ	Data and Databa	ise Management	System	the	Data	hase	Life	Cyc	le the
R	Relational Model ER Model: Entities Relationship Attributes Degree of							gree of	

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

	Relationship connectivity, attributes of a relationship. Concepts of Generalization, Specialization & Aggregation. Concepts of FD. Normalisation : 1NF, 2NF, 3NF & BCNF, lossless join, dependency preservation. Denormalization.
Unit – 2	Relational Algebra & Calculus. Transforming the Conceptual Data Model to
	SQL Storage using RAID architecture. B-tree and B-tree Index Files.
	Measures of Query Cost & overview of query evaluation.
Unit – 3	Transaction concept, Concurrency Control, Database Recovery.
	Laboratory: Types of SQL commands: DDL, DML, DQL & DCL. Tables:
	create, alter, drop. View: creating view, Data query and manipulation with view.
	Testing for NULL and when not to use NULL. Aggregate Functions: Count(),
	SUM(), AVG(), MAX(), MIN(). Select Statement, Subquaries, INSERT,
	UPDATE and DELETE operation. Joins: Natural join, Self join, outer join and
	Cartesian product. Data security: GRANT and REVOKE.

Text Books:

- 1. T. J. Teorey et al.: Database Modelling and Design: Logical Design, 4th Edition, Morgan Kaufmann, 2005.
- 2. A. Silberschatz, H. F. Korth and S. Sudarshan: Database System Concepts, 6th Edition, McGraw Hill, 2013.
- 3. A. Leon, M. Leon: SQL: A Complete Reference, McGraw Hill, 2007.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours						Credit
MMA 226130	Classical	Compulsory	L 3 T 1 P 0						4
	Mechanics								
Pre-requisite	:								
Course Assessn	nent Methods :	As per CUJ norr	ns (60 1	narks	from	n enc	l sem	ester	and 40
		marks from session	onal exar	ninati	ions)				
Syllabus	02								
Version ·									

Course Objective: A course designed to introduce students to classical mechanics. An introduction to modern classical mechanics as applied to the particles and solid bodies. If you do not learn classical mechanics, then you will not understand the major developments of science. To revise Newtonian mechanics and introduce Lagrangian formulation of mechanics. To emphasis the understanding of Classical Mechanics using Lagrangian and Hamiltonian Approach. To realize the reduction of a two-body problem to a one-body problem in a central force system. To appreciate the theory of relativity for particles having relativistic speeds.

- **Course Outcome:** Identify the motion of a mechanical system using Lagrange-Hamilton formalism.
- Apply the formalism of Lagrangian and Hamiltonian in generating equations of motion for complicated mechanical systems of classical mechanics.
- Determine the differential equation of orbit, stability of orbit under central force, scattering cross section, scattering angle, impact factor.
- Compare Lagrangian and Hamiltonian formalism, Galiliean and Lorentz

 ${}^{\rm Page}53$

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

transformation and various reference frames.							
• App	• Apply theory of relativity to determine time dilation, length contraction and						
simultaneity							
• Dete	• Determine the various Four vectors: position, velocity, acceleration, momentum,						
Force.							
Unit – 1	Jnit – 1 Integrals of Motion: Ignorable Coordinates Routhian function. Generalize						
	coordinates, Lagrange's equations.						
Unit – 2	t-2 Hamilton's canonical equations, Hamilton's principle and principle of least						
	action, Hamilton Jacobi equation, Possain and Lagrange's Brackets, Canonical						
	transformation.						
Unit – 3	Two-dimensional motion of rigid bodies, Euler's dynamical equations for the						
	motion of a rigid body about a fixed point, theory of small oscillations.						
Text Books:							
1. T. G	1. T. Greenwood: Classical Dynamics, Dover, 1997.						
2. H. C	2. H. Goldstein, C.R. Poole and J. Safko: Classical Mechanics, 3 rd Edition, Pearson						
India	India, 2011.						
3. E.T.	Whittaker: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies:						
With	With an Introduction to the Problem of Three Bodies, 4th edition, CUP, 1989.						
4. L.D.	4. L.D. Landau and E.M. Lifshitz: Mechanics, 3 rd edition, Butterworth-Heinemann,						
1982	1982.						
5. H.C.	5. H.C. Corben and P. Stehle: Classical Mechanics, 2 nd edition, Dover Publications,						
1994							
6. J.B.	5. J.B. Marion and S.T. Thornton: Classical Dynamics of Particles and Systems, 5 th						
editi	edition, Cengage Learning, 2003.						
7. V.I.	7. V.I. Arnold and A. Weinstein: Mathematical Methods of Classical Mechanics, 2 nd						
edition, Springer, 1997.							
Reference B	ooks:						

Course Code	Course Title	Course Type	Contact Hours Cre				Credit		
MMA226140	Tensor	Compulsory	L	3	Т	1	Р	0	4
	Algebra								
Pre-requisite	:								
Course Assessment Methods :		As per CUJ norms (60 marks from end semester and 40							
		marks from session	onal exa	minat	ions)				
Syllabus	02								
Version :									
Course Objective: The role of the course is to introduce the principles of tensor analysis. It									
is assumed that students entering this course have previously taken the entry level course on									
Continuum Mechanics and the fundamental concept of special theory of relativity and its									
applications. To learn about tensor quantities and algebra of tensor addition and									
multiplication. To understand differentiation of tensors fields.									
Course Outcome:									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 1	Transformation of coordinates, Tensors, Algebra of Tensor, Symmetric and skew-Symmetric tensors, Contraction of Tensor and Quotient law.					
Unit – 2	Riemannian metric, Christoffel Symbol, Covariant derivatives, Intrinsic derivatives and geodesics.					
Unit – 3	Riemann Christoffel Curvature Tensor and it's symmetry properties, Binach identities and Einstein tensor.					
Unit – 4	Quick Review of the special theory of relativity and general relativity. Einstein's Field equations, Schwarzchild's external solution and isotropic form. Energy-Momentum tensor of a perfect fluid. Schwarzchild's internal solution.					
Unit – 5	Boundary conditions, Energy-Momentum tensor of an electromagnetic field, Einstein-Maxwell equations, Reissner-Nordstrom solution.					
Text Books:						
1. C. E. Weatherburn: An Introduction to Riemannian Geometry and the Tensor Calculus, CUP, 2008.						
2. H. Stephani et al.: General Relativity: An Introduction to the Theory of Gravitational Field, 2 nd edition, CUP, 1990.						
3. A.S.E	Eddington: The Mathematical Theory of Relativity, 2 nd edition, CUP, 2010.					

- A. S. Eddington. The Mathematical Theory of Relativity, 2⁻⁻ edition, CO1, 2010.
 J. V. Narlikar: Lectures on General Relativity and Cosmology, Macmillan Press, 2013
 R. Adler: Introduction to General Relativity, 2nd edition, McGraw-Hill, 1975.
 B. Schutz: A First Course in General Relativity, 2nd edition, CUP, 2010.
 J.K. Goyal and K.P. Gupta: Theory of Relativity, Krishna Prakashan, 2019.

Reference Books:

Course Code	Course Title	Course Type	Contact Hours Cr				Credit		
MMA226150	Differential	Compulsory	L	3	Т	1	Р	0	4
	Manifold								
Pre-requisite	· .								
Course Assessment Methods :		As per CUJ norr	ns (60 1	marks	from	end	sem	ester	and 40
		marks from session	onal exam	minati	ons)				
Syllabus	02								
Version :									
Course Objective: introduce "Differential Manifold" to the students. The course typically									
revolves around introducing students to the fundamental concepts, theories, and techniques									
related to the study of differential manifolds, smooth manifolds, topological manifolds, and									
geometric properties of manifolds. This includes understanding concepts like dimensionality,									
connectivity, compactness, and orientability. Techniques for studying differentiable structures									
smooth partitions of unity, immersions, embeddings, and submersions on manifolds would									
be explored. Introduction to the tangent bundle and cotangent bundle of a manifold. A deeper									
dive into Lie groups and Lie algebras, which are special types of manifolds with group									
structures. This includes understanding Lie group actions, Lie brackets, and the relationship									
between Lie gro	between Lie groups and Lie algebras.							_	

Course Outcome:

Students should demonstrate a thorough understanding of the definition and properties of different types of manifolds, including smooth, topological, and differentiable

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

manifolds.

- Students should be able to compute tangent spaces, tangent bundles, and understand vector fields on manifolds. They should also demonstrate proficiency in differentiating functions on manifolds.
- Students should be able to work with differential forms, understand their geometric significance, and perform integration of forms over manifolds.
- Students should demonstrate familiarity with Lie groups, Lie algebras, and their properties, including Lie group actions and Lie brackets

TT: 4 1	Oright marines to Comment of Surfaces (at most 5 glasses) Device time of					
Unit - I	Quick review to Curves and Surfaces (at most 5 classes), Derivative of a					
	function from an open subset of \mathbb{R}^n into \mathbb{R}^m as a linear transformation. Chain					
	rule. Partial derivatives. Taylor's theorem. Inverse function theorem. Implici					
	function theorem, Jacobians.					
Unit – 2	Manifolds, Smooth maps and diffeomorphisms, Tangent Spaces to a manifold,					
	Derivatives of smooths maps, Immersions and submersions, submanifolds,					
	Vector fields, Flows and exponential map, Frobenius theorem, Lie groups and					
	Lie algebras, Homogeneous spaces,					
Unit – 3	3 Multilinear algebra, Exterior algebra, Tensor fields, Exterior derivative, I					
	derivatives. Orientable manifolds, Integration on manifolds, Stokes' theorem,					
	Tangent Bundles and Vector Bundles.					
Text Books:						
1. S. Ku	maresan: A Course in Differential Geometry and Lie Groups, Hindustan Book					
Agency, 2002.						
2. J. R. Munkres: Analysis on Manifolds, Westview Press, 1997.						
3. S. Lang: Introduction to Differentiable Manifold, 2 nd edition, Springer, 2002.						
4. L. Auslander and R. E. Mackenzie: Introduction to Differentiable Manifolds, Dover,						
2009.						

Reference Books: