

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

<u>Course Curriculum and Syllabus</u> (As per NEP-2020)

For

<u>5 Years Integrated in M.Sc. in Mathematics</u>

Effective from Session 2022-23

Department of Mathematics School of Natural Sciences Central University of Jharkhand, Ranchi 835222, Jharkhand

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

About the Department

The Department of Mathematics (as Centre for Applied Mathematics) was started in July 2009 under the School of Natural Sciences of Central University of Jharkhand. This department was first in Jharkhand to offer 5 years integrated M.Sc. programs in Applied Mathematics from the year 2009 to 2016. It has started M. Sc. Program in Mathematics since 2017. It also offers PhD. program in Mathematics and allied subjects since the year 2013. From the year 2022, it has started again offering integrated B.Sc.-M.Sc. in Mathematics.

Mission of the Department

• To advance the logical, analytical thinking and development of scientific practice with applications among the students in order to produce mathematical scholars so that they can flourish themselves in areas of Pure and Applied Mathematics, Financial mathematics, Computer Science, Scientific Computing, Statistical Methods, Information Technology and Actuarial Science etc.

Vision of the Department:

- The department aims to provide high-quality education in mathematics at all levels, from undergraduate to graduate studies. This includes fostering a deep understanding of mathematical concepts, promoting critical thinking skills, and preparing students for a wide range of careers or further academic pursuits.
- A strong emphasis is placed on advancing the frontiers of mathematical knowledge through research. This involves both fundamental research aimed at solving theoretical problems and applied research addressing real-world challenges. The department seeks to foster a vibrant research community, where faculty and students collaborate on cutting-edge projects and contribute to the global body of mathematical knowledge. The department strives to earn regional recognition for its expertise in the field of mathematics and the teaching of mathematics.

Program Name: Integrated B.Sc. and M.Sc. in Mathematics

Eligibility Criteria for Admission:

Passed 10+ 2 or equivalent examination in Science stream or equivalent with Mathematics as one of the optional subject having minimum 55% marks or equivalent grade in aggregate for General and EWS category and 50% or equivalent grade in aggregate for SC/ST/OBC (non-creamy layer)/ PWD Categories.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Intake Capacity: 43 About the Program

The Department has started offering a five years Integrated Degree program for its students as per NEP 2020 curriculum framework. The program offers rigorous coursework ensuring a strong foundational base. In addition to a number of core basic courses, students are required to complete at least few advanced courses. The course has been offered with a major in Mathematics with minor subjects such as Physics, Chemistry, Statistics, Life Science, Environmental Sciences, Geography, Economics, and Computer Science etc. The program curriculum would undergo periodic reviews, upgrades and changes, bearing in mind the rapid change in industry and R&D demands.

Under this program, a provision for multiple entry and exit at various levels has been incorporated to fulfill the mandate of NEP 2020. A student can get an Undergraduate Certificate, Undergraduate Diploma, B.Sc., B.Sc. with honors at different levels of exit, otherwise, Integrated M.Sc. Degree directly at the end of 5 years after completing the mandatory course and credit requirements.

• *"Undergraduate Certificate*" in Mathematics will be awarded in case of opting out after 1 year.

(Additional 4 credits has to be earned at the end of 1st year to eligible for "*Undergraduate Certificate*")

• "Undergraduate Diploma" in Mathematics will be awarded in case of opting out after 2 years.

(Additional 4 credits has to be earned at the end of 2nd year to eligible for "Undergraduate Diploma")

- "Bachelor's in Science (B.Sc.)" degree in Mathematics will be awarded in case of opting out after 3 years. Students need to gain total credits required in the range of 120-128.
 The students will be promoted to "B.Sc. with Honors" only if he/she has cleared all the previous papers and secures 7.50 or above CGPA.
- "B.Sc. with Honors" degree in Mathematics will be awarded in case of opting exit after 4th year. Students need to gain total credits required in the range of 163-168.
- "Integrated B. Sc. And M.Sc." degree will be awarded in Mathematics after 5th year. Students need to gain total credits required in the range of 223-228.

*Notwithstanding the exit and entry policy and nomenclature of the certificates mentioned here, the university regulations in this regard will supersede these regulations.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Name of the Department: Mathematics Name of the School: Natural Sciences Programme Name: Integrated UG-PG in Mathematics

Details of Course Syllabi Mapped with COs (For Integrated Programme I-X) SEMESTER WISE STRUCTURE

<u>Course Structure Details</u>

Programme Name	:	UG	G-PG in Mathematics
Programme Objective	••••	Pro	ogram Objectives (POs): Program Objectives (POs) for a
(POs)		Inte	egrated UG-PG in Mathematics outline the expected
		acc	omplishments and career aspirations of graduates of the
		pro	gram. These objectives serve as benchmarks for evaluating
		the	effectiveness of the program in preparing students for their
		pro	fessional roles and future endeavours. Some potential
		Pro	gram Objectives for an Integrated UG-PG in Mathematics:
		4	PO 1: To provide students with a solid foundation in core
			mathematical concepts, theories, and techniques across
			various branches of mathematics including calculus, algebra,
			analysis, geometry, Numerical Analysis and applied
			mathematics.
		4	PO 2: To enable students to delve deeper into specialized
			areas of mathematics such as number theory, topology,
			differential equations, mathematical modeling, Numerical
			Analysis, optimization, and cryptography, among others.
		4	PO 3: To develop students' ability to analyze complex
			problems, formulate mathematical models, and apply
			appropriate mathematical methods and algorithms to solve
			them effectively.
		4	PO 4: To foster critical thinking skills and logical reasoning
			abilities essential for mathematical analysis and rigorous
			proofs, enabling students to develop sound arguments and
			justify mathematical assertions.
		4	PO 5: To prepare students for research-oriented careers by
			introducing them to the research process, encouraging
			independent inquiry, and providing opportunities to engage in
			research projects under the guidance of faculty mentors.
Programme outcome	:	4	PO 1: The program will enable students with a deep
			understanding of basic and applied mathematical concepts,
			theories and their applications.
		4	PO 2: It will enable the students to think independently,
			analyze complex problems and solve them.

	PO 3: It will enable students to conduct independent research, develop appropriate mathematical algorithms to solve problems in different branches of mathematics.
Programme Specific Outcome (SPOs)	 Program Specific Outcomes (PSOs) for an Integrated UG-PG in Mathematics specify the specific knowledge, skills, and attributes that graduates of the program should possess upon completion. These outcomes provide a more detailed framework for assessing the attainment of the program's educational objectives. Here are some potential Program Specific Outcomes for an Integrated UG-PG in Mathematics: PO 1: Quality professionals in Mathematics who fulfill the educational objectives of the program and meet the missions of the University and the Department. PO 2: Graduates should demonstrate a deep understanding of advanced mathematical concepts across various branches such as algebra, calculus, analysis, differential equations, discrete mathematics, and geometry. PO 3: Students should be proficient in applying mathematical reasoning and problem-solving techniques to analyze and solve complex mathematical problems across different domains, including pure and applied mathematical methodologies and tools. PO 5: Students should be able to conduct independent research, analyze mathematical problems critically, and develop innovative solutions using appropriate mathematical methodologies and tools.
	Semester-I

Semester-1							
Course Code	Title of the Course	Course Type	Credit				
MAT 011010	Analysis-I	Major-1	3				
MAT 011030	Linear Algebra	Major-2	2				
MAT 021010*	Analysis and Linear Algebra	Minor-1	4				
MAT 031030#	Mathematics In Everyday Life	MDC-1	3				
		AEC-1	2				
MAT 051010#	Quantitative Aptitude and Logical	SEC-1	3				
	Thinking						
		VAC-1	3				
		Total Credits	20				

Semester-II									
Course Code	Title of the Course	Course Type	Credit						
MAT011020	Differential Equations-I	Major-3	3						
MAT011040	Group Theory	Group Theory Major-4							
MAT021020*	Differential Equations-I	Differential Equations-I Minor-2							
MAT 031040#	Mathematics In Everyday Life	MDC-2	3						
		AEC-2	2						
MAT 051020#	Quantitative Aptitude and Logical Thinking	SEC-2	3						
		VAC-2	3						
		Total Credits	20						
	Semester-III								
MAT 012010	Probability-I	Major-5	4						
MAT 012030	Calculus	Major-6	4						
MAT 022010*	Calculus	Minor-3	4						
MAT 032030	Mathematics in Everyday Life	MDC-3	3						
		AEC-3	2						
		SEC-3	3						
		Total Credits	20						
	Semester-IV								
MAT 012020	Statistics-I	Major-7	4						
MAT 012040	Partial Differential Equations-I	Major-8	4						
MAT 012060	Number Theory	Major-9	4						
MAT 012080	Optimization Techniques-I	Major-10	2						
MAT 022020*	Partial Differential Equations-I	Minor-4	4						
		AEC-4	2						
		Total Credits	20						

Semester-V							
MAT 013010	Numerical Analysis with Lab-I	Major-11	4				
MAT 013030	Differential Equations-II	Major-12	2				
MAT 013050	Probability-II	Major-13	4				

	Moocs courses	Major-14: Elective-I	4				
MAT 053010	Summer Internship	SEC-4	2				
MAT 023010*	Numerical Analysis with Lab-I	Minor-5	4				
	·	Total Credits	20				
	Semester-VI						
Course Code	Title of the Course	Course Type	Credit				
MAT 013020	Statistics-II	Major-15	4				
MAT 013040	Complex Analysis	Major-16	4				
MAT 013060	Mechanics – I	Major-17	4				
MAT 023040*	Complex Analysis	Minor-6	4				
	Moocs courses	Major-18 Elective-II	4				
		Total Credits	20				
	Semester-VII		1				
MAT 014010	Mathematical Analysis	Major-19	4				
MAT 014030	Numerical Analysis with Lab-II	Major-20	4				
MAT 014050	Differential Equations-II Major-21						
MAT 024010*	Differential Equations-II Minor-9						
MAT 024030*	Graph Theory Minor-10						
		Major-22: Elective-III	4				
		Total Credits	22				
	Semester-VIII						
		Major-23: Elective-IV	4				
		Major-24: Elective-V	4				
		Major-25: Elective-VI	4				
MAT 084020	Project Project						
		Total Credits	24				
	Semester-IX		1				
MAT 015010	Measure Theory and Integration	Major-26	4				
MAT 015030	Partial Differential Equations-II	Major-27	4				
MAT 015050	Topology	Major-28	4				
MAT 015070	Calculus of Variations and Integral	Major-29	4				
	Equations						
		Major-30: Elective-VII	4				
		Major-31: Elective-VIII	4				
	I	Total Credits	24				
	Semester-X						
MAT 015020	Functional Analysis	Major-26	4				
MAT 015040	Optimization Techniques-II	Major-27	4				
MAT 015060	Advanced Linear Algebra	Major-28	4				

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Major-32: Elective-IX	4
Major-33: Elective-X	4
Total Credits	20

TOTAL CREDITS AFTER ^{5th} YEAR=218

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

DETAILED SYLLABUS

Course Code	Course Title	Course Type		Co	ontact Hours				Credit
MAT 011010	Analysis-I	Major	L	3	Т	0	Р	0	3
Pre-requisite	:								
Course	Assessment	As per CUJ norms	(60 mark	ks fror	n end	sem	ester	and 40) marks
Methods :		from sessional exam	inations))					
Syllabus	01								
Version :									
Course Object	tives: The gene	ral goal of this cour	se is to p	provide	e the	back	groun	d info	rmation
in Analysis. It	comprehensiv	ely studies the real 1	number s	system	, as v	vell a	s fun	ctions	on real
numbers, incl	luding differer	tial and integral ca	lculus o	of one	vari	able.	This	s cour	se also
provides prere	equisite training	g for other advanced-	level co	urses i	n, Ca	lculu	s, rea	l analy	sis and
topology.									
Course Outco	mes (COs): Af	er completion of this	course, t	the stu	dents	shall	be al	ole to:	
1. After comp	pletion of this	course students wil	l be able	e to d	emon	strate	e com	peten	ce with
elementary pr	operties of rea	l numbers, sets, func	tions, se	quenc	es, an	id sei	ries. S	Studen	ts learn
analysis of sir	ngle variable fi	inctions: continuity,	differenti	lability	/ integ	gratic	on of	the fur	nctions.
One of the i	major outcom	es of this course is	s to den	nonstr	ate sl	cills	in co	ommui	ncating
mathematics.									
TT ·/ 1	TT1 1		0.1.1	<u> </u>	<u>, ,.</u>		<u> </u>	1	• 1 1
Unit - I	The language	of sets and functions	. Calcult	$\frac{1}{2}$ us of t	unctio	ons o	t a su	ngle v	ariable-
	Rates of cha	nge and limits, typ	bes of l	imits	and	asym	ptotes	s, con	tinuity;
	attainment of	supremum and infir	num of	a con		is iu		1 ON a	closed
	functions of	val, unitionitic contribution	Differen	tiobili	ty cc	fund	ious	ahoi	on and
	includes of bounded variation. Differentiability of functions, chain fule,								
	monotonic functions and the first derivative test. Convexity Concevity and								
	monotonic functions and the first derivative test. Convexity, Concavity and								
	and applicatio	g. Taylor 5 expansion to certain standard	evnansio	ns Hi	oher /	leriv	atives	mavi	m_{a} and
	minima Appl	cations of functions	of a sir	nole v	ariahl	e Ar	nlied	ontin	nization
	problems Inte	rmediate forms and I	?Hospita	l's rul	e and	othe	r appl	ication	IS.
Unit – 2	Sequences lir	nit of a sequence cor	vergent	seque	nces.	boun	ded a	nd mo	notonic
	sequences th	e limit superior ar	nd limit	infer	ior o	fa	seque	ence	Cauchy
	sequences and	the completeness of	f R. alge	bra of	'limit	s. Se	ries: -	- conv	ergence
	and divergen	ce of series of r	ositive	terms	, abs	olute	and	l con	ditional
	convergence.	Various tests of conve	ergence.		,				/-
Unit – 3	Riemann inte	gration, existence of	of Riema	ann ir	tegra	l for	suff	icientl	y well-
	behaved fund	tions. Fundamental	theorem	n of	integ	al C	Calcul	us, In	nproper
	integrals, Be	a function, Gamma	functio	ons an	d rel	ated	defir	nite in	tegrals.
	Surface area a	nd Volume.							~

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Text Books

- W. Rudin: *Principles of Mathematical Analysis*, 3rd edition, Tata McGraw Hill, 1976.
 T. M. Apostol: *Mathematical Analysis*, 2nd edition, Narosa, 1974.
- 3. R.G. Bartle, D.R. Sherbert: Introduction to Real Analysis, 3rd edition, Wiley, 2000.
- 4. M. D. Weir, J. Hass and F. R. Giordano: Thomas' Calculus, 15th edition, Pearson, 2022.
- T. M. Apostol: *Calculus, Volumes 1 and 2*, 2nd edition, Wiley, 1980.
 J. Stewart: *Calculus*, 5th edition, Thomson, 2003.

Course Code	Course Titl	e	Course	Contact Hours Cr					Credit	
			Туре							
MAT 011030	Linear		Major	L	2	Т	0	Р	0	2
	Algebra									
Pre-requisite	:									
Course Assessme	nt Methods	As	s per CUJ n	orm	ns (60 r	narks fr	om e	nd sei	nester a	and 40 marks from
:		ses	ssional exar	nina	ations)					
Syllabus	01									
Version :										
Course Objective	s: The goal o	f th	e course is	to 1	earn th	e matri	x and	vecto	or algeb	ra notation, matrix
algebra operation	s. The study	of	linearly de	pen	dent ar	id indep	pende	nt of	vectors	to understand the
linear span and t	the basis of	vect	tor space.	The	study	of line	ear tra	ansfor	mation	to understand the
Eigenvalues and I	Eigenvectors	of n	natrices.							
Course Outcomes	(COs): After	cor	mpletion of	this	s course	e, the st	udent	s shal	l be able	e to:
1. To apply	linear algebra	to to	solve syste	em o	of linea	r equati	ions a	ind sy	stem of	linear differential
equations.										
2. They will	l learn to fi	nd	orthogonal	ve	ctors,	bases,	dime	nsions	s of m	atrices and linear
operators.										
3. They will	learn how to	fin	id Eigen va	lues	and E	igenvec	ctors of	of ma	trices a	nd linear operators
and study	their nature.									
4. To deal wi	ith analytical	tech	hniques to s	solv	e linea	r systen	n that	is ess	ential ii	1 most branches of
5. To use the	essential too	l of	matrices ar	nd li	near al	gebra ir	n a co	mnreł	ensive	manner

Unit – 1	Vectors in \mathbb{R}^n and \mathbb{C}^n , notions of linear dependence and independence, linear span of a set of vectors, vector subspaces of \mathbb{R}^n and \mathbb{C}^n , the basis of a vector subspace. Systems of linear equations, matrices and Gauss elimination, row space, null space, and column space, rank of a matrix. Determinants and rank of a matrix.
Unit – 2	Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem. Inner product in Euclidean space. Eigenvalues and eigenvectors, characteristic polynomials, diagonalisation, Caley-Hamilton theorem, the eigenvalue of special matrices (symmetric, skew-symmetric Hermitian, skew-Hermitian, orthogonal, unitary, normal).
Text Books	
 E. Kreysz G. Strang: H. Anton 2016. Reference Books: 	ig: Advanced Engineering Mathematics, 10 th edition, Wiley, 2011. <i>Linear Algebra and its Applications</i> , 4 th edition, Thomson, 2006. and C. Rorres: <i>Elementary Linear Algebra with Applications</i> , 11 th edition, Wiley,

Course Code	Course Title	Course Type		Contact Hours Credit					Credit
MAT 021010	Analysis and	l Major	L	3	Т	1	Р	0	4
	Linear								
	Algebra								
Pre-requisite									
Course Assessme	nt Methods:	As per CUJ norms (60 marks from end semester and 40 marks from							
		sessional examinations)							
Syllabus Version	01								
:									
Course Objective	s: The goal of	f the course is	to 1	earn th	e matri	x and	vecto	r algeb	ra notation, matrix
algebra operation	algebra operations. The study of linearly dependent and independent of vectors to understand the								
linear span and basis of vector space, the study of linear transformation to understand the									
Eigenvalues and	Eigenvalues and Eigenvectors of matrices.								

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Outcomes (Cos): Linear algebra provides the solution of systems of linear/linear differential equations. Linear algebra is also used in analytic geometry, engineering, physics, natural sciences, computer science, computer animation, economics and the social sciences. The concepts of linear algebra are crucial for understanding the theory behind machine learning, especially for deep learning. They give you better intuition for how algorithms really work under the hood, which enables you to make better decisions.

The students will learn:

- To apply linear algebra to solve system of linear equations and system of linear differential equations.
- They will learn to find orthogonal vectors, bases, dimensions of matrices and linear operators.
- They will learn how to find Eigenvalues and eigenvectors of matrices and linear operators and study their nature.
- To deal with analytical techniques to solve linear system that is essential in most branches of engineering.
- To use the essential tool of matrices and linear algebra in a comprehensive manner.

Unit – 1	The language of sets and functions. Calculus of functions of a single variable- Rates of change and limits, types of limits and asymptotes, continuity; attainment of supremum and infimum of a continuous function on a closed bounded interval, uniform continuity, absolutely continuous function and functions of bounded variation. Differentiability of functions, chain rule, implicit differentiation, applications. Rolle's theorem and mean value theorem, monotonic functions and the first derivative test. Convexity, Concavity and curve sketching. Taylor's expansion: - various forms of remainder after n terms and application to certain standard expansions. Higher derivatives, maxima and minima. Applications of functions of a single variable: Applied optimization problems. Intermediate forms and L'Hospital's rule and other applications.
Unit – 2	Sequences, limit of a sequence, convergent sequences; bounded and monotonic sequences, the limit superior and limit inferior of a sequence. Cauchy sequences and the completeness of R, algebra of limits. Series: - convergence and divergence of series of positive terms, absolute and conditional convergence. Various tests of convergence. Riemann integration, existence of Riemann integral for sufficiently well-behaved functions. Fundamental theorem of integral Calculus, Improper integrals, Beta function, Gamma functions and related definite integrals. Surface area and Volume.
Unit – 3	Vectors in \mathbb{R}^n and \mathbb{C}^n , notions of linear dependence and independence, linear span of a set of vectors, vector subspaces of \mathbb{R}^n and \mathbb{C}^n , the basis of a vector subspace. Systems of linear equations, matrices and Gauss elimination, row space, null space, and column space, rank of a matrix. Determinants and rank of a matrix.
Unit – 4	Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem. Inner product in Euclidean

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

space. Eigenvalues and eigenvectors, characteristic polynomials, diagonalisation, Caley-Hamilton theorem, the Eigenvalue of special matrices (symmetric, skew-symmetric Hermitian, skew-Hermitian, orthogonal, unitary, normal).

Text Books

- 1. E. Kreyszig: Advanced Engineering Mathematics, 10th edition, Wiley, 2011.
- **2.** G. Strang: *Linear Algebra and its Applications*, 4th edition, Thomson, 2006.
- **3.** H. Anton and C. Rorres: *Elementary Linear Algebra with Applications*, 11th edition, Wiley, 2016.
- 4. W. Rudin: *Principles of Mathematical Analysis*, 3rd edition, Tata McGraw Hill, 1976.
- 5. R.G. Bartle, D.R. Sherbert: Introduction to Real Analysis, 3rd edition, Wiley, 2000.

Course Code	Course Title	Course			Contac	t Hou	rs		Credit	
		Туре								
MAT011020	Differential	Major	L	2	Т	1	Р	0	3	
	Equations-I									
Pre-requisite	:									
Course Assess	ment Methods	As per CUJ r	norm	ns (60 i	narks fi	om e	nd sei	nester a	and 40 marks from	
:		sessional exa	sional examinations)							
Syllabus Version 01										
Course Objectives: The aim goal of this course is to learn the formation of ODE, the order and										
degree of ODI	E, known metho	ds to solve fin	st-o	rder O	DE, and	l initia	al and	bounda	ry value problems	
for first and s	econd-order OE	DE. Test the O	DE	has th	e uniqu	e sol	ution	by Pica	rd's existence and	
uniqueness the	eorem. Further,	Wronskian of	fun	nctions,	reduct	ion o	rder,	solution	Linear equations	
with constant	coefficients by	the method	of	undete	rmined	coef	ficien	ts, Line	ar equations with	
variable coeffi	cients by variati	on of paramete	ers, a	and Eu	ler-Cau	chy e	quatio	n. Furth	her we learn Series	
solutions of O	DE: ordinary po	ints, power ser	ies :	solutio	n, regula	ar sin	gular	points,	Frobenius method.	
Laplace transf	orm definition, e	existence, first	shif	ting the	eorem, s	secon	d shift	ting the	orem, convolution,	
and application	ns.			-				-		
Course Outcor	nes (COs): Solu	tion of some s	peci	al clas	ses of fi	rst-or	der O	DEs; se	parable equations,	
homogeneous	and exact ODE	, integrating fa	ictor	rs first	order li	near	ODE,	Bernou	Illi equation, finds	
the orthogonal	and oblique tra	jectories. Stud	ents	are als	so able t	to sol	ve lin	ear secc	ond-order ode with	
constant and v	constant and variable coefficients and use Laplace transform to solve initial value problems.									

Unit – 1	Basic concepts, Geometric meaning, Direction fields. 1 st order linear equations,
	homogeneous and non-homogeneous, Separation of variables, Exact Differential
	equations, integrating factors, Bernoulli Equation, Orthogonal trajectories, Existence
	Uniqueness: Picard's iteration, Autonomous Differential Equations and Population
	Dynamics. Nonlinear first order differential equations and their solutions.
Unit – 2	2 nd and higher order Linear Differential equations: homogeneous and non-
	homogeneous equation with constant coefficients, Mass spring system, Wronskian,
	method of undetermined coefficients, operator method, variation of parameters
	method, Mechanical and Electrical Vibrations, Forced Periodic Vibrations, Euler's
	equation,
	Systems of first order differential equations, Trial solution method for linear system
	with constant coefficients and Eigen value technique. Particular solution.
Unit – 3	Laplace transforms generalities, Shifting theorems, Convolution theorem.
	Application to finding solution of initial value problem, integral equations and other
	applications, Step Functions, Differential Equations with Discontinuous Forcing
	Functions, Impulse Functions.
Text Books	
1. E. Kre	yszig: Advanced Engineering Mathematics, 10 th edition, Wiley, 2011.
2. William	m E. Boyce, Richard C. DiPrima, Douglas B. Meade: <i>Elementary Differential</i>
Equati	ons and Boundary Value Problems, 12th edition, Wiley, 2021.
3. T.M. A	postol: <i>Calculus</i> , Volume II, 2 nd edition, Wiley, 1980.
Reference Boo	oks:

Course Code	Course Title			Contac	Credit				
		Туре							
MAT011040	Group	Major	L	2	Т	0	Р	0	2
	Theory								
Pre-requisite	:								
Course Assessme	ent Methods	As per CUJ r	orn	ns (60 i	narks fi	rom e	nd sei	nester a	and 40 marks from
:	sessional example	mina	ations)						
Syllabus Version	n 01								
:									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Objectives: The main aim of the course is to introduce basic concepts of abstract algebra, especially the notion of a group. The course will help us to prepare for further study in abstract algebra and many other areas of mathematics. Group theory is one of the great simplifying and unifying ideas in modern mathematics. It plays a major role in our understanding of fundamental particles, the structure of crystal lattices, and the geometry of molecules.

Course Outcomes (COs): At the end of the course students are able to understand the concept of algebraic structures, groups, rings, fields, modules, etc. Students are also able to understand concepts of abelian, symmetric, cyclic, quotient, normal, Sylow groups, homomorphism, isomorphism, and their properties. Further, students can understand the integral domain, zero divisors, division ring, ring homomorphism, and field.

Unit – 1	Semigroups, Groups, Homomorphisms, Subgroups, Permutation Groups, Normal
	Subgroups, Isomorphism Theorem, Automorphisms, Conjugacy and G-sets.
Unit – 2	Normal Series, Solvable groups, Nilpotent groups, Cyclic decomposition of

Jnit – 2 Normal Series, Solvable groups, Nilpotent groups, Cyclic decomposition of permutations, Alternating group. Structure Theorem of Finite abelian groups. Sylows theorems, groups of orders p^2 , pq.

Text Books

- **1.** P.B. Bhattacharya, S. K. Jain and S. R. Nagpaul: Basic Abstract Algebra, 2nd edition, Cambridge University Press, 1995.
- 2. J. A. Gallian: Contemporary Abstract Algebra, 4th edition, Narosa, 1998.
- 3. D. S. Dummit and R. M. Foote: Abstract Algebra, 2nd edition, Wiley, 1999.
- **4.** I. N. Herstein: Topics in Algebra, 2nd edition, Wiley, 1975.

Course Code		Course Title		Course			Contac	Credit				
				Туре								
MAT021020	D	oifferential	Minor	L	3	Т	1	Р	0	4		
	E	quations-I										
Pre-requisite	site :											
Course Assessment Methods As per CUJ norms (60 marks from end semester and 40 marks fr							and 40 marks from					
:			ses	ssional exar	minations)							
Syllabus Versi	ior	n 01										
:												
Course Objectives: The aim goal of this course is to learn the formation of ODE, the order and												
degree of ODE, known methods to solve first-order ODE, and initial and boundary value problems												

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

for first and second-order ODE. Test the ODE has the unique solution by Picard's existence and uniqueness theorem. Further, Wronskian of functions, reduction order, solution Linear equations with constant coefficients by the method of undetermined coefficients, Linear equations with variable coefficients by variation of parameters, and Euler-Cauchy equation. Laplace transform definition, existence, first shifting theorem, second shifting theorem, convolution, and applications.

Course Outcomes (COs): Solution of some special classes of first-order ODEs; separable equations, homogeneous and exact ODE, integrating factors first order linear ODE, Bernoulli equation, find the orthogonal and oblique trajectories. Students are also able to solve linear second-order ode with constant and variable coefficients and use Laplace transform to solve initial value problems.

Unit – 1	Basic concepts, Geometric meaning, Direction fields. 1 st order linear equations,									
	homogeneous and non-homogeneous, Solution Method for Nonlinear equations,									
	Separation of variables, Exact Differential equations, integrating factors, Bernoulli									
	Equation, Orthogonal trajectories, Existence Uniqueness: Picard's iteration, nonlinear									
	first order differential equation.									
Unit – 2	2 nd and higher order Linear Differential equations: homogeneous and non-									
	homogeneous equation with constant coefficients, Mass spring system, Wronskian,									

	nonogeneous equation with constant coefficients, Mass spring system, wronskian,
	method of undetermined coefficients, operator method, variation of parameters
	method, Euler's equation.
Unit – 3	Systems of first order differential equations, Trial solution method for linear system

Unit - 4Laplace transform generalities, Shifting theorems, Convolution theorem. Solution of

Improper integrals. Application to finding solution of initial value problem, integral equations and other applications.

Text Books

1. E. Kreyszig: Advanced Engineering Mathematics, 9th edition, Wiley, 2005.

- 2. W. E. Boyce and R. C. DiPrima: *Elementary Differential Equation*, 8th edition, Wiley, 2005.
- **3.** T.M. Apostol: *Calculus*, Volume II, 2nd edition, Wiley, 1980.

Course Code	Course Title	Course Type			Contac	Credit			
MAT 031020	Mathematics In Daily Life	Multi- Disciplinary	L	3	Т	0	Р	0	3

		Course								
D ::/										
Pre-requisite				60	1 0		1		1.40 1.6	
Course Assessme	ent Methods	As per CUJ nori sessional examin	ns (atio	60 mai ns)	ks fror	n enc	i seme	ester ar	id 40 marks from	
Syllabus Version 01										
Course Objectives: To introduce the basic mathematical concepts that are used in different aspects of our daily life.										
Course Outcomes (COs): After this course students will be able to understand everyday banking transactions, identify patterns and relationships. Students will be able to perform basic calculations and measurement and also understand about ratios and proportions. Notes: A candidate must obtain the minimum pass marks to clear the course.										
Unit – 1	Arithmetica	l Ability								
	Unit conversion (length, mass, time); Number System; Decimal Fractions; Square Roots and Cube Roots; Problems on Numbers; Problems on Ages; Use of concepts of HCF and LCM; Percentage; Ratio and Proportion; Time and Distance; Alligations or Mixture; Area, Volume, Surface Areas; Trigonometric ratios; Height and Distance in our everyday life.									
Unit – 2	Banking Ability									
	Interest - Concept of Present value and Future value, Simple interest, Compound interest, Nominal and Effective rate of interest; Depreciation and discount; Annuity - Ordinary annuity, sinking fund, annuity due, present value and future value of annuity; Equated Monthly Installments (EMI) by Interest of Reducing Balance and Elat Interest methods - examples and problems									
Unit – 3	Data Interp	retation								
	Probability; representatio	Classification of n of data - Bar G	data raph	a - Free is, Pie (quency Charts,	distr Line	ibutio Grapl	n, Tabı ıs; Cale	lation; Graphical endar and Clocks.	
Text Books										
 R.S. Agrawal, Quantitative Aptitude, S. Chand Publishing (2022). M.K. Bhowal, Fundamentals of Business Mathematics, Asian Books (2009). S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand Publishing (2020). A.S. Posamentier, C. Spreitzer, The Mathematics of Everyday Life, Prometheus Books, Illustrated Edition (2018). 										

Course Code	Course Title	Course Type			Contac	t Hou	ırs		Credit		
MAT 051020	Quantitative Aptitude and Logical Thinking	Skill Enhancement Course	L	3	Т	0	Р	0	3		
Pre-requisite	:								<u> </u>		
Course	Assessment A	As per CUJ norms	s (60) mark	ks from	end	seme	ster an	d 40 marks from		
Methods :	sessional examinations)										
Syllabus	01										
Version :											
Course Objectiv	es: Quantitativ	e and logical think	ıng	are cru	acial sk	ills th	nat inv	olve th	he ability to		
analyse, interpre	t, and manipul	ate numerical and	logi	cal inf	ormati	on.					
1. To introdu	To introduce the basic mathematical concepts that are used in different aspects of our daily										
lifa	introduce the suste matternation concepts that are used in unrefert aspects of our dairy										
me.	lite.										
2. Apply qua	antitative and lo	ogical reasoning to	o sol	ve pro	blems	in dif	ferent	contex	xts.		
Course Outcome quantitative and Demonstrate pro statistical technic reasoning.	es (COs): Afte logical analyst oficiency in ba iques to analy	r this course stude is. Apply systemat sic mathematical vze and interpret	ents tic p con data	will I robler cepts a. Dev	dentify n-solvi and op velop	and ng str erationskills	defin rategio ons. A in d	e probles to an apply n eductiv	lems that require rive at solutions. nathematical and ve and inductive		
Unit – 1	Quantitative	Aptitude & Data	Int	erpret	tation						
	Unit – 1: Who	ole numbers, Integ	ers,	Ration	nal and	irrati	onal r	number	rs, Fractions,		
	Square roots a	and Cube roots, Su	ırds	and In	dices,	Probl	ems o	n Num	bers,		
	Divisibility, S	teps of Long Divis	sion	Meth	od for l	Findi	ng Sq	uare Ro	oots: Numerical		
	computations	based on 16 sutra	s an	d 13 si	ub-sutr	as of	Vedic	mathe	matics.		
	Unit -2: Basic	concepts, Differe	nt fo	ormula	e of Pe	ercent	age, I	Profit a	nd Loss,		
	Discount, Sin	ple interest, Ratio	and	l Prop	ortion,	Mixt	ure				
	Unit- 3: Time and Work, Pipes and Cisterns, Basic concepts of Time, Distance and										

	Speed ; relationship among them
	Unit – 4: Concept of Angles, Different Polygons like triangles, rectangle, square,
	right angled triangle, Pythagorean Theorem, Perimeter and Area of Triangles,
	Rectangles, Circles
	Unit – 5: Raw and Grouped Data, Bar Graphs, Pie charts, Mean, Median and Mode, Events and Sample Space, Probability.
Unit – 2	LOGICAL REASONING
	Unit - 1: Analogy basing on kinds of relationships, Simple Analogy; Pattern and
	Series of Numbers, Letters, Figures. Coding-Decoding of Numbers, Letters,
	Symbols (Figures), Blood relations.
	UNIT – 2: Logical Statements – Two premise argument, More than two premise
	argument using connectives
	UNIT -3: Venn Diagrams, Mirror Images, Problems on Cubes and Dices
Text Books	
1. R.S.	Aggarwal, Quantitative Aptitude, S. Chand Publishing (2022).
2. Disha	a Experts, Shortcuts in Quantitative aptitude for competitive exams, 3rd Edition, Disha
Publi	cation, 2021
3. R. V.	Praveen, Quantitative Aptitude and Reasoning, PHI, 2012.
4. Ram	nandan Shastri, Vedic Mathematics For All Competitive Exams, Arihant, 2012.
Reference B	poks:

Course Code	Course Title			Contac	Credit						
MAT 012010	Probability .	I Major	L	3	Т	1	Р	0	4		
Pre-requisite	:	/ / / / / / / / / / / / / / / /									
Course Assessme	ent Methods	As per CUJ	norn	ns (60 i	narks fi	rom e	nd sei	nester a	and 40 marks from		
:	sessional exa	min	ations)								
Syllabus Version	01										
•											

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Objectives: The course covers fundamental concepts and basic examples, assuming no previous knowledge of the subject. But required some knowledge of calculus, basic combinatorics, and set theory is assumed. Also, this is a preparatory course in basic probability theory for the next-level course in Statistical methods that are useful for everyday life. Therefore the students can choose this course for their careers.

Course Outcomes (COs): After completing this course students acquire a basic knowledge of Probability Theory, useful for modeling uncertain phenomena, and required an understanding the logic of Statistical Methods and machine learning. Also acquire a basic understanding of random variables, random vectors, and discrete-valued random processes. Thus students will be able to understand advanced probability models and be able to analyze and develop such models.

Unit – 1	An Introduction to Probability: Introduction, A Review of Sets, Sigma Fields,
	Experiments and Sample Spaces, Events, Definitions of Probability, Finite Sample
	Spaces and Enumeration, Conditional Probability, Addition and Multiplication
	Theorems, Independent Events, Total Probability, Bayes Theorem.
Unit – 2	One Dimensional Random Variables: Introduction, Discrete and Continuous Random
	Variables, Distribution Function, Probability Mass and Density Functions.
	Functions of One Random Variable and Expectation: Introduction, Functions of
	Discrete Random Variable, Continuous Function of Continuous Random Variable,
	Expectation, Probability Generating Function, Moment Generating Function,
	Characteristic Function.
Unit – 3	Joint Probability Distributions: Introduction, Joint Distribution for two Dimensional
	Random Variables, Marginal Distributions, Conditional Distributions, Covariance,
	Conditional Expectation, Independence of Random Variables, The Distribution
	Function for two Dimensional Random Variables. Distribution of Sum of two
	Independent Random Variables.
	Basic Properties of Some Important Distributions: Degenerate, Bernoulli, Binomial,
	Negative Binomial, Geometric, Hyper-Geometric, Poisson, Multinomial, Pascal,
	Uniform Exponential Gamma Weibull Normal

- Text Books
 - 1. K.L. Chung and F. Aitsahlia: Elementary Probability Theory: with Stochastic Process and an Introduction to Mathematical Finance, *Springer*, 4th Edition, 2003.
 - 2. W.W. Hines, D.C. Montgomery, D.M. Goldsman, and C.M. Borror: Probability and Statistics in Engineering, *John Wiley and Sons*, 4th Edition, 2007.
 - 3. S.M. Ross: Introduction to Probability and Statistics for Engineers and Scientists, *Academic Press*, 4th Edition, 2010.
 - 4. P. Billingsley: Probability and Measure, *Wiley*, 3rd Edition, 2012.
 - 5. W. Feller: An Introduction to Probability Theory and its Applications, Vol-I, *Wiley India*, 3rd *edition*, 2008.
 - 6. W. Feller: An Introduction to Probability Theory and its Applications, Vol-II, *Wiley India*, 2nd *edition*, 2008.
 - 7. S. C. Gupta and V. K. Kapoor: Fundamental of Mathematical Statistics, S. Chand, 2007.
 - 8. A. M. Goon, M. K. Gupta, B. Dasgupta: Fundamental of Statistics, Vol. I, II, World Press,

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

2001.

Course Code	Course Title	Course			Contac	et Hou	ırs		Credit
		Туре				1	1		
MAT 011030	Calculus	Major	L	3	Т	1	Р	0	4
Pre-requisite :									
Course Assessme	ent Methods	As per CUJ r	orm	ns (60 i	narks f	rom e	nd sei	mester a	and 40 marks from
:		sessional exa	mina	ations)					
Syllabus Version	n 01								
:									
Course Objectiv	es: The goal	of the cours	e is	to lea	arn bas	ic tec	chniqu	les of a	differentiation and
integration, the s	students gain s	ome proficier	ncy	in calc	ulus co	omput	ation,	and the	ey use some main
tools for analysi	ng the behavio	our of function	ons:	limits,	derivat	tives	and ir	ntegral.	Students can use
these tools to har	ndle application	problems in	phys	sics, bi	ology, ł	ousine	ess and	d econor	mics.
Course Outcomes (COs): Students are able to understand basic Calculus concepts, including									
differentiation a	ind integration	techniques, c	onve	ergence	e of inte	grals	and in	nfinite s	eries, and Taylor's
theorem. Stude	nts can apply	the knowledg	ge o	f the a	above c	oncep	ots to	exhibit	algebraically and
geometrically. F	Further Calculu	s concepts wi	ill be	e applie	ed to so	lve pl	hysics	, geome	etry, and numerical
approximation p	problems.								
The students wi	ll learn:								
• To apply	differential and	d integral cal	culu	s to no	tions of	f curv	ature	and to i	mproper integrals.
Apart from	m some other a	pplications th	ney v	will hav	ve a bas	sic un	dersta	nding of	f Beta and Gamma
functions									
 To explai 	n the fallouts of	of Rolle's Th	eore	m that	is fund	lamen	tal to	applica	tion of analysis to
Engineeri	ing problems.								
 To discus 	ss the tool of j	power series	and	Fourie	er serie	s for	learni	ng adva	anced Engineering
Mathema	tics.								
• To deal w	vith functions of	f several varia	ables	s that is	s essent	ial in	most l	branche	s of engineering.
Unit – 1	Calculus: (Quie	ck review of	Suco	cessive	differe	ntiatio	on and	l Leibni	tz theorem, limits,
	continuity, and differentiability, Mean value theorem, Taylors Theorem, Maxima								
	and Minima).	Riemann int	egra	tion, I	Darboux	theo	orem,	Fundar	nental theorem of
	integral Calcul	us, Improper	inte	grals,	Beta fu	nctior	ı, Gar	nma fur	nctions and related

	definite integrals. Surface area and Volume. Convergence of sequences and series,						
	power series.						
Unit – 2	Calculus of several variables differentiability of maps from R^m to R^n and the						
	derivative as a linear map. Higher derivatives, Chain Rule, Taylor expansions in						
	several variables, Local Maxima and minima, Lagrange multiplier.						
Unit – 3	Multiple integrals, Existence of the Riemann integral for sufficiently well behaved						
	functions on rectangles, i.e. product of intervals. Multiple integrals expressed as						
	iterated simple integrals. Brief treatment of multiple integrals on more general						
	domains. Change of variables and the Jacobian formula. Inverse and implicit						
TT · 4	function theorems.						
Unit - 4	More advanced topics in the calculus of one and several variables- curves in R^2 and R^3						
	R ⁵ . Line integrals, Surfaces in R ⁵ , Surface integrals, Divergence, Gradient and Curl						
T (D 1	operations, Green S, Strokes and Gauss (Divergence) theorems.						
Text Books							
1 0							
edition, 1	B. Thomas, Joel Hass, Christopher Hell, Maurice D. weir: <i>Thomas Calculus</i> , 14 Pearson, 2018.						
2. E. Kreys	zig: Advanced Engineering Mathematics, 10 th edition, Wiley, 2011.						
3. T. M. År	postol: Calculus, Volumes 1 and 2, 2 nd edition, Wiley, 1980.						
4. J. Stewa	rt: <i>Calculus</i> , 9 th edition, Thomson, 2021.						
5. S. Naray	an: A Textbook of Vector Calculus, S. Chand, 2003.						
6. W. Rudi	n: Principles of Mathematical Analysis, 3 rd edition, McGraw Hill 1976						
7. W. Flem	7. W. Fleming: Functions of Several Variables, 2 nd edition, Springer Verlag, 1977.						
Dafaranaa Daal	a:						
Reference BOOK	5.						

Course Code	Course Title	Course Title Course			Contac	Credit			
		Туре							
MAT 022010	Calculus	Minor	L	3	Т	1	Р	0	4
Pre-requisite	:	/ / / / / / / / / / / / / / / /							
Course Assessme	ent Methods	As per CUJ n	orm	ns (60 i	narks f	rom e	nd ser	nester a	and 40 marks from
:	5	sessional exai	mina	ations)					
Syllabus Version	01								
:									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Objectives: The goal of the course is to learn basic techniques of differentiation and integration, the students gain some proficiency in calculus computation, and they use some main tools for analysing the behaviour of functions: limits, derivatives and integral. Students can use these tools to handle application problems in physics, biology, business and economics.

Course Outcomes (COs): Students are able to understand basic Calculus concepts, including differentiation and integration techniques, convergence of integrals and infinite series, and Taylor's theorem. Students can apply the knowledge of the above concepts to exhibit algebraically and geometrically. Further Calculus concepts will be applied to solve physics, geometry, and numerical approximation problems.

The students will learn:

- To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.
- To explain the fallouts of Rolle's Theorem that is fundamental to application of analysis to Engineering problems.
- To discuss the tool of power series and Fourier series for learning advanced Engineering Mathematics.
- To deal with functions of several variables that is essential in most branches of engineering.

Unit – 1	Calculus: (Quick review of Successive differentiation and Leibnitz theorem, limits, continuity, and differentiability, Mean value theorem, Taylors Theorem,
	Maxima and Minima). Riemann integration, Darboux theorem, Fundamental
	theorem of integral Calculus, Improper integrals, Beta function, Gamma functions
	and related definite integrals. Surface area and Volume.
	Convergence of sequences and series, power series.
Unit – 2	Calculus of several variables differentiability of maps from R^m to R^n and the
	derivative as a linear map. Higher derivatives, Chain Rule, Taylor expansions in
	several variables, Local Maxima and minima, Lagrange multiplier.
Unit – 3	Multiple integrals, Existence of the Riemann integral for sufficiently well behaved
	functions on rectangles, i.e. product of intervals. Multiple integrals expressed as
	iterated simple integrals. Brief treatment of multiple integrals on more general
	domains. Change of variables and the Jacobian formula. Inverse and implicit
	function theorems.
Unit – 4	More advanced topics in the calculus of one and several variables- curves in R^2
	and R^3 . Line integrals, Surfaces in R^3 , Surface integrals, Divergence, Gradient
	and Curl operations, Green's, Strokes' and Gauss' (Divergence) theorems.
Text Books	

1. George B. Thomas, Joel Hass, Christopher Heil, Maurice D. Weir: *Thomas' Calculus*, 14th edition, Pearson, 2018.

2. E. Kreyszig: Advanced Engineering Mathematics, 10th edition, Wiley, 2011.

- 3. T. M. Apostol: Calculus, Volumes 1 and 2, 2nd edition, Wiley, 1980.
- 4. J. Stewart: Calculus, 9th edition, Thomson, 2021.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

- S. Narayan: A Textbook of Vector Calculus, S. Chand, 2003.
 W. Rudin: *Principles of Mathematical Analysis*, 3rd edition, McGraw Hill 1976
 W. Fleming: *Functions of Several Variables*, 2nd edition, Springer Verlag, 1977.

Course Code	Course Title	e Course Type			Contac	et Hou	ırs		Credit
MAT 012020	Statistics-I	Major	L	3	Т	1	Р	0	4
Pre-requisite	:								
Course Assessme	ent Methods	As per CU.	norn	ns (60 i	narks fi	rom e	nd sei	nester a	and 40 marks from
:		sessional ex	amin	ations)					
Syllabus Version	01	01							
:									
Course Objective	es: The generation	al goal of th	is co	urse is	to stud	y Inti	roduct	ion to S	Statistics, different
measurement sca	les, and vario	ous types of	data,	to anal	yze and	l inter	rpret c	lata, to	organize data into
frequency distrib	frequency distribution graphs, including bar graphs, histograms, polygons, and Ogives, Students will								
confer the measu	confer the measuring central tendency, dispersion, skewness, kurtosis and compute them as well to								
understand the co	oncept of mor	ments and at	tribut	es. the	concep	ots of	proba	bility, it	s applications, the
concept of rando	m variables, p	probability f	inctio	ns, exp	ectation	n and	gener	ating fu	nctions, properties
of random variab	oles like expe	ctation, mor	nent g	generati	ng func	ction,	cumu	lative g	enerating function
etc., introduction	to p.m.f, p.d.f	f and c.d.f.							
Course Outcome	s (COs): At th	e end of this	s cour	se stud	ents ma	y abl	e to u	nderstar	d the concept of a
statistical popula	tion and a sa	mple from	a Pop	ulation	. Meası	ires c	of cen	tral ten	dency, Dispersion,
Skewness and k	Kurtosis and	Moments.	Гhey	can al	so und	erstar	nd the	e conce	pt of correlation,
correlation coeff	ficients - Ka	rl Pearson'	s cor	relatior	coeffi	icient,	Spea	arman's	rank correlation
coefficient, multi	ple and partia	l correlation	coeff	icients,	and Int	raclas	s corr	elation.	The students gain
knowledge on ra	andom variab	les and are	able	to dist	inguish	whie	ch are	discre	te and continuous
random variable	s. Probability	y mass fun	ction	and p	robabili	ity de	ensity	function	on. Mathematical
expectation of a	a random va	riable. Cond	litiona	al expe	ectation	and	varia	nce. Ga	ain knowledge in
sampling distribution	sampling distribution theory and their applications in statistical inference. Chi- square, t and F								
distribution.	distribution.								
Unit – 1	Basic Conce	epts of Stati	stics:	Introdu	iction, A	Appli	cation	s of Sta	itistics in Science,
	Population,	opulation, Variable, Parameter, Sample, Brief idea on Sampling Theory.							
Unit – 2	Collection a	Collection and Representation of Data: Introduction, Collection of Raw Data,							

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

	Category of Raw Data, Organization of Data, Tabular and Graphical Methods for
	Describing Data.
Unit – 3	Summarizing the Dataset: Introduction, Grouped and Ungrouped Dataset,
	Measures of Central Tendency, Measures of Dispersion, Coefficient of Variation,
	Raw and Central Moments, Skewness and Kurtosis.
Unit – 4	Correlation and Regression Analysis: Introduction, Types of Correlation, Karl
	Pearson's Coefficient of Correlation, Properties, Rank Correlation, Multiple and
	Partial Correlation, Linear Regression Model, Regression Coefficient and its
	Properties, Computation of Regression Equation, Multiple Regression Analysis.
Unit – 5	Sampling Distributions: Sampling Distribution based on Normal Random
	Variables, t- Distribution, Chi-Square Distribution, F Distribution, Non-Central
	Chi- Square, t and F Distributions. Sampling from Bivariate Normal Distribution.

Text Books

- **1.** S. Sarkar and N. Pal: Statistics- Concepts and Application, Prentice Hall of India Private Limited, 2nd Edition, 2008.
- 2. G. Casella and R. L. Berger: Statistical Inference, Cengage Learning, 3 rd Edition, 2008.
- **3.** W.W. Hines, D.C. Montgomery, D.M. Goldsman, and C.M. Borror: Probability and Statistics in Engineering, John wiley and Sons, 4 th Edition, 2007.
- **4.** R.E. Walpole, R.H. Myers, S.L. Myers and K. Ye: Probability and Statistics, Pearson Education, 2006.
- 5. S. C. Gupta and V. K. Kapoor: Fundamental of Mathematical Statistics, S. Chand, 2007.
- 6. A. M. Goon, M. K. Gupta, B. Dasgupta: Fundamental of Statistics, Vol. I, II, World Press, 2001.

Course Code	Course Title	e Course	rse Contact Hours Credit						
		Туре							
MAT 012040	Partial	Major	L	3	Т	1	Р	0	4
	Differential								
	Equation-I								
Pre-requisite	•								
Course Assessment Methods As per CUJ r			norms (60 marks from end semester and 40 marks from						
:	sessional exa			ations)					

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Syllabus Version 01 Course Objectives: The main aim of this course is to give an introduction to the basic properties of PDEs and to the basic analytical techniques to solve PDEs equations. A partial differential equation (PDE) is a differential equation that must contain an unknown function and its partial derivatives. PDEs also play an important role in other areas of mathematics such as analysis and differential geometry. Course Outcomes (COs): After completion of this course students should able to solve the simplest first-order PDEs and recognize the type of second-order PDEs. Further students able to understand what are well-posed initial or boundary value problems for classical PDEs such as the wave equation, the Laplace equation, and the heat (diffusion) equation. Unit – 1 Introduction to partial differential equations. Solution of linear and nonlinear partial differential equations of order one. Introduction to Cauchy's problem. Homogeneous and non-homogeneous linear partial differential equations. Classification of partial differential equations, reduction to canonical or normal form. Monge's method, second order Cauchy Problem. Unit – 2 Sturm-Liouville problems and eigenfunction expansions: The Sturm-Liouville problem, Inner product spaces and orthonormal systems, basic properties of Sturm-Liouville eigenfunctions and eigenvalues, Nonhomogeneous equations, Nonhomogeneous boundary conditions. Elements of Fourier analysis: The Fourier series of a function, convergence of Unit – 3 Fourier series, Fourier Integral, Fourier transform and their convergence. Text Books **1.** P.V. O'Neil: Beginning Partial Differential Equations, 2nd edition, Wiley, 2008. 2. Y. Pinchover and J. Rubinstein: An Introduction to Partial Differential Equations, Cambridge University Press, 2005. 3. R. Haberman: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 4th edition, Pearson, 2004. 4. M. D. Raisinghania: Ordinary and Partial Differential Equations, 12 th edition, S. Chand, 2010. 5. R. P. Agarwal and D. O'Regan: Ordinary and Partial Differential Equations. With Special Functions, Fourier Series, Boundary Value Problems, Springer 2009. 6. L.C. Evans: Partial Differential Equations, AMS, 1998. 7. E. A. Coddington and N. Levinson: Theory of Ordinary Differential Equations, Tata McGraw Hill, 1987. Reference Books:

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Code	Course Title	Course Type			Contac	t Hou	irs		Credit
MAT 012060	Number	Major I 3 T 1 P 0						Δ	
WIAI 012000	Theory	1114j01		5	1	1	1	U	т
Dra raquisita	· · · · · · · · · · · · · · · · · · ·								
Course Assessme		a man CIII a			en aulta fi				and 40 montrs from
:	ment Methods As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations)								
Syllabus Version	01	01							
:									
Course Objective	es: The course a	aims to give	e ele	ementa	ry ideas	s of r	umbe	r theor	y which will have
applications in c	ryptography. R	eader Identi	fy a	and app	oly vari	ous p	ropert	ties of a	and relating to the
integers includir	ig the Well-Or	dering Prind	ciple	e, prim	nes, uni	que	factor	ization,	and the division
algorithm, and u	nderstand the co	ncept of qua	adra	tic con	gruence	e. Prir	ne po	wer mo	dule and primitive
roots may help	to improve the	existing al	gori	thm fo	or prima	ality 1	testing	g and p	rime factorization
problem which	is highly applic	able in cod	ling	theory	and c	rypto	graph	y to de	velop new digital
devices. This cou	urse also covers	Euler's, La	gran	ige and	d Wilso	n the	orem.	Euler c	riterion, Legendre
symbol, Law of c	uadratic recipro	city; neither	r Eu	ler nor	Legend	lre we	ere ab	le to pro	ove this but Gauss.
Pell's equation.	1 1	5			υ			1	,
Course Outcome	s (COs): After	completing	the	course	e. stude	nts w	ill be	able to	solve elementary
number theory r	problems they c	an apply el	eme	entarv	number	theo	rv to	cryptog	graphy. Develop a
deeper conceptua	l understanding	of the theor	etic	al basis	s of nur	nber t	heorv	and ide	entify how number
theory is related t	to and used in cr	vptography.							,
5		51 8 1 5							
Unit – 1	Divisibilty, div	vision algori	ithm	, Eucl	idean A	Igori	thm, 1	Algebra	ic congruences of
	higher degree.	General T	aylc	or Exp	ansion	Meth	od fo	r Prime	e Power Modulus
	Theorems of	Euler, Lagi	rang	e and	Wilsor	n. Pri	mality	/ Testir	ng and Factoring,
	Primitive Root	S.	0						
Unit – 2	Quadratic Con	ngruence, E	uler	's Cri	teria ar	nd Le	egendr	e's Syr	mbol, two square
	theorem, quadi	ratic recipro	city	law, A	rithmeti	c fun	ction,	Dirichle	et product, Mobius
	inversion form	ula, divisor	func	tion.					
Unit – 3	Simple continu	ed fractions	, Ap	proxin	nation to	o ratio	onal n	umbers,	, Hurwitz theorem,
	periodic contin	ued fraction	, Pe	ll's Equ	uation.				
Text Books									
1. G.H. Har	dy and E.M. W	/right: An I	ntro	ductior	n to Th	e The	eory c	of Num	bers, 6 th edition,
	niversity Press, 1	2008. N. 1 771		C 11	1.4.		тт	11 000	-
2. D.M. Bur	ton: Elementary	Number Th	eory	7, 6 th e	dition,	McGi	aw-H	111, 2003). TI TI C
3. I. Niven, H.S. Zuckerman and H.L. Montgomery: An Introduction to The Theory of									

Numbers, 5 th edition, Wiley, 1991.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

4. T. M. Apostol: Introduction to Analytic Number theory, Springer-Verlag 1976

Course Code	Course Title	e Course Type			Contac	et Hou	ırs		Credit	
MAT 012080	Optimizatio Techniques	on Major I	L	2	Т	0	Р	0	2	
Pre-requisite	:	I I I I :								
Course Assessme	nent Methods As per CUJ norms (60 marks from end semester and 40 marks sessional examinations)								and 40 marks from	
Syllabus Version	sion 01									
Course Objectives: linear Programming deals with the problem of optimizing a linear objective function subject to linear equality and inequality constraints on the decision variables. Linear programming has many practical applications (e.g. assignment problems, transportation, problems, production planning problem, etc). One aspect of linear programming which is often forgotten is the fact that it is also a useful proof technique. In the beginning chapter, we study some linear programming formulations for some classical problems. We also show that linear programs can be expressed in a variety of equivalent ways.										
Course Outcome minimize) profit Graphical, the S minimize transpo approximation m	Course Outcomes (COs): After completion of this course students are able to maximize (or, minimize) profit (or, cost) of a general class of problems called optimization problems by using Graphical, the Simplex, Dual Simplex, Two Phase, Big-M method. Further students can able to minimize transportation costs by using, the North-West corner rule, Least-Cost, and Vogel's approximation method.									
Unit – 1Introduction to Operation Research: Operations research techniques, simulation models. Convex Sets and Convex functions. Linear Programming formulation and graphical solution: Models of mathematic operations research, art of modeling, construction of the LP model, graphical I solution. The Simplex method: Standard LP form, basic solution, The Simplex method, the M-method, the two-phase method, degeneracy, alternative optim solution, unbounded solution, infeasible solution, the dual Simplex method.Unit – 2Sensitivity analysis and dual problem: Definition of the dual problem. the						niques, simulation ls of mathematical odel, graphical LP tion, The Simplex alternative optimal lex method. dual problem, the				
	Sensitivity analysis and dual problem: Definition of the dual problem, the relationship between the optimal primal and dual solution, economic interpretation									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

of duality, primal-dual computations, sensitivity analysis. Transportation, assignment and transshipment models: Definition of the transportation model, determination of a starting solution, the transportation algorithm, definition of the assignment problem, the Hungarian method, the transhipment model.

Text Books

- 1. H. A. Taha: Operations Research: An introduction, 8th edition, Pearson, 2008.
- 2. F. Hillier and G. Liebermann: Introduction to Operations Research, 8th edition, McGraw Hill, 2005.
- 3. W. L. Winston: Operations Research: Applications and Algorithms, 4th edition, Cengage, 2004.
- 4. S. D. Sharma: Operations Research: Theory and Applications, 4th edition, Macmillan, 2010.
- 5. J. K. Sharma: Operations Research: Theory and Applications, 4th edition, Macmillan, 2009.

Course Code	Course Title	e Cours	se		Contac	et Hou	ırs		Credit		
		Туре	e								
MAT 013010	Numerical	Majo	or L	3	Т	0	Р	1	4		
	Analysis wi	th									
	Lab-I										
Pre-requisite	•										
Course Assessme	ent Methods	As per CU	UJ norn	ns (60	marks f	rom e	nd ser	nester a	and 40 marks from		
:	sess			ations)	1						
Syllabus Version 01											
:											
Course Objective	es: This cour	se covers:	the m	athema	ntical ar	nd con	mputa	tional f	oundations of the		
numerical approx	ximation and	solution c	of scien	tific p	roblems	; sim	ple op	otimizat	ion; vectorization;		
clustering; polyn	omial and spl	ine interpo	olation;	patteri	1 recogr	nition;	integ	ration a	nd differentiation;		
solution of large-	scale systems	of linear a	and non	linear	equation	ns; mo	odeling	g and so	olution with sparse		
equations; explic	it schemes to	solve ordin	ary diff	ferentia	al equati	ons.					
Course Outcome	s (COs): Den	nonstrate a	n unde	rstandi	ng of c	ommo	on nur	nerical	methods and how		
they are used to	obtain approx	imate solu	tions to	mathe	ematical	prob	lems.	Apply r	numerical methods		
to obtain approx	proximate solutions to mathematical problems. Derive numerical methods for various						ethods for various				
mathematical operations and tasks, such as interpolation, differentiation, integration, the solution							on, the solution of				

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

linear and nonlinear equations, and the solution of differential equations. Analyse and evaluate the accuracy of common numerical methods. Implement numerical methods in Matlab. Write efficient, well-documented Matlab code and present numerical results in an informative way.

Unit – 1	Nature of numerical computations: errors and their propagation, convergence and							
	stability of numerical algorithms; efficiency and arithmetic, complexity.							
Unit – 2	Numerical solution of systems of linear equations: Direct methods for solving							
	linear systems, error analysis. The residual correction method. Iteration methods,							
Error prediction and Acceleration.								
Unit – 3 Matrix Eigenvalue problem: Eigenvalue location, error, and stability results, P								
	method. Orthogonal transformations using Householder matrices. The eigenvalues of							
	a symmetric Tridiagonal matrix. OR method. The calculation of Eigenvectors and							
	Inverse iteration.							
Unit – 4	Numerical solutions of Non-linear equations: Solution of non-linear equations by							
	iterative methods, acceleration of convergence. Newton's methods for polynomials.							
	quotient-difference algorithms. Numerical solution of system of Non-linear							
	equations.							
Unit – 5	Interpolation: Interpolating polynomial and its construction using Lagrange							
	methods and methods of differences, iterated interpolation, method of divided							
	differences, inverse interpolation, Hermite Interpolation. The general Hermite							
	interpolation problem. Spline function and their use.							
Unit – 6	Lab Component: Exposure to Matlab/Mathematica and computational experiments							
	based on the algorithms discussed in the course.							
Text Books								
1. K. Atk	inson: An Introduction to Numerical Analysis, 2nd edition, Wiley, 1989.							
2. R L B	urden and J.D. Faires. Numerical analysis 7th edition Brooks Cole 2001							
3. P.J. Da	vis. Interpolation and Approximation Dover 1975							
4. JM O	rtega: Numerical Analysis: A Second Course SIAM 1987							
5. S S S	stry. Introductory Methods of Numerical Analysis. Phi Learning 2009							
C 5.5. 50	suy. Inconductory methods of realistical runarysis, r in Dearning, 2009.							
Reference Boo	oks [.]							
literenee Dot								

a a 1		0		G III
Course Code	Course Title	Course	Contact Hours	Credit
		Туре		

MAT 013030	Complex	Major	L	3	Т	1	Р	0	4
Due no milito	Analysis								
Pre-requisite				(())	1 0		1		1.40 1.0
Course Assessme	ent Methods	As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations)							
Syllabus Version	01	01							
Course Objective	s. This course	covers fund	ame	ntal kr	owledo	e of a	romnl	ex num	hers including the
theory of analyti	cal functions	This course	also	covers	the kn	owlea	lge of	f limits	and continuity for
complex function	is as well as the	e consequenc	es o	f conti	nuity F	Furthe	r this	course	has applications to
find definite inte	gration with the	ne study of h	arm	onic ar	nd spec	ial fu	nction	s. The	complex functions
make a significar	t contribution	to the underst	and	ing of t	he worl	ld in v	vhich	we live.	. I
Course Outcome	s (COs): Afte	r successful	cor	npletio	n of th	ne cou	urse,	students	s will be able to:
Calculate series	expansions for	analytical co	mpl	lex-val	ued fun	ctions	s and	evaluate	e contour integrals
in the complex p	lane. Evaluate	complex con	tou	r integr	als dire	ctly, ł	by the	fundan	nental theorem, by
applying the Cau	ichy integral th	neorem, and	the	Cauch	y integr	al for	mula.	Studer	its may be able to
represent comple	x functions as	a Taylor, po	wer	, and I	aurent	series	, and	they cla	assify singularities
and poles, also at	le to find resid	ues and evalu	ıate	comple	ex integ	rals u	sing tl	he resid	ue theorem.
Unit – 1	Basic algebra	aic properties	s of	f comp	olex nu	mbers	s, Exp	oonentia	al form, Roots of
	complex num	bers. Functio	ons (of a co	mplex v	variab	le, ma	appings	, Cauchy-Riemann
	equations, sur	ficient condi	tion	s for d	ifferenti	abilit	y, Ana	lytic fu	nctions, Harmonic
	functions. El	ementary fun	ctio	ns: The	e expon	ential	, loga	rithm f	unctions, branches
	and derivativ	es of logari	thm	s. Con	nplex e	expone	ents,	trigonoi	metric, hyperbolic
	functions and	their inverse	S.						
Unit – 2	Integrals: Co	mplex integr	rals,	Uppe	r bound	ds foi	mod	luli of	contour integrals,
	Cauchy's th	eorem, Cau	chy	's inte	egral f	formu	la, L	liouville	es' theorem and
	fundamental	theorem o	t a	algebra	, max	1mum	mo	dulis	principle. Series:
	Classification	of singularit	1es.	Repres	sentatio	ns of	holon	iorphic	functions in terms
	of power ser	les, Meromo	rphi	c func	tions, z	eros a	and p	oles, La	aurent expansions.
	Residues and	Poles: pole	s ai	nd zero	bes, Ca	uchy	s resi	due the	eorem, Residue at
	infinity, Resi	iue at poles.	Eva	luation	of imp	oroper	integ	rals and	d definite integrals
11: 1	using contour	Integration. A	Argu	iment p	orinciple	e and	Kouci	he s theo	brem.
Unit - 3	Mapping by	Elementary	Tur	ictions	Linea	ir tra	nsiorn Gun ati	nations,	linear fractional
	Dragomystion	ns, other ma	ppir	igs by	elemen	hary 1		ons. Co	onformal mapping:
	Preservation	of alignes, t		formal	ions of	nam	nome	Tuncuc	ons and boundary
Toxt Books	conditions. A	ppilcations of		nonna	парри	iigs.			
1. R. V. Chu	rchill and J. W	. Brown: Con	nple	ex Vari	ables ar	nd Ap	plicati	ons, 8th	n edition, McGraw
Hill, 2009).								
2. L. Ahlfor	s: Complex A	Analysis: an	Intro	oductio	n to th	e The	eory o	of Anal	ytic Functions of
One Com	plex Variable,	Brd edition, Ta	ata l	McGray	w Hill,	1979.			

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- 3. E.T. Copson: Theory of Functions of a Complex Variable, Oxford University Press, 1970.
- 4. J.B. Conway: Functions of One Complex Variable, 2nd edition, Narosa, 1973.
- 5. D. Sarason: Complex Function Theory, 2nd edition, Hindustan Publishing Company, 2008.
- **6.** M.J. Ablowitz: Complex Variables Introduction and Applications, 2nd edition, Cambridge University Press, 2003.
- 7. S. Ponnusamy and H. Silverman: Complex Variables with Applications, Birkh⁻auser, 2006.

Course Code	Course Title	e Course Type		Contact Hours Credi											
MAT 013050	Probability .	· Major	L	3	Т	1	Р	0	4						
	II														
Pre-requisite	:														
Course Assessme	ent Methods	As per CUJ norms (60 marks from end semester and 40 marks from													
:		sessional exa	min	ations)											
Syllabus Version	n 01														
:															
Course Objectiv	Course Objectives: Probability-I is the prerequisite of this course. This course provides an							ourse provides an							
understanding of	the basic col	ncepts in the	rand	om vai	riable, r	nathe	matica	al expe	ctation, concept of						
convergence and	check for the	convergence	of a	given	sequen	ce of	rando	m varia	ibles. and different						
types of distribut	ions, sampling	g theory and es	stima	ation th	leory.										
Course Outcome	s (COs):														
Unit – 1	Inequalities	: Introduction	, Pr	obabili	ty Ineq	ualiti	es, Ho	oeffding	s' Inequality, The						
	Bounded Di	fference Ineq	ualit	y, Bou	inds on	Exp	ected	Values,	Chernoff Bound,						
	Cherboff Bo	und and a Sun	nof I	Poisson	Trials.	1		-							
Unit – 2	Properties	of a Randon	n Sa	ample:	Introd	uction	n, Bas	sic Cor	cepts of Random						
	Sample, Co	onvergence C	once	epts, C	Converg	ence	in I	Probabil	ity, Almost Sure						
	Convergence, Convergence in Distribution, The Delta Method, Order Statistics														
	and their Dis	stributions													
Unit – 3	Limit Theo	rems: Introdu	ictio	n, Wea	ak Law	of L	arge	Number	rs, Strong Law of						
	Large Numb	g Moment Generating Function, Kolmogorov Khinchin													
	Theorem, B	orel Cantelli	Len	nma, K	Colmogo	orov	Series	Theorem, Borel Cantelli Lemma, Kolmogorov Series Theorem, Central Lim							

	Theorem.									
Unit – 4	Concept of Generation of Random Variables: Introduction, Generation of									
	Discrete and Continuous Random Variables.									
	Introduction to Stochastic Process:									
	Introduction, Purposes and Applications.									
Text Books										
1. K.L.	Chung and F. Aitsahlia: Elementary Probability Theory: with Stochastic Process and an									
Intro	duction to Mathematical Finance, Springer, 4th Edition, 2003.									
2. P. B	illingsley: Probability and Measure, Wiley, 3rd Edition, 2012.									
3. S.F	oss: A First course in Probability, 6th Edition, Pearson Education, 2006.									
4. V.K	. Rohatgi and A.K. Ehsanes Saleh: An Introduction to Probability and Statistics, John									
Wile	y and Sons, Inc. 2003.									
5. W.	Feller: An Introduction to Probability Theory and its Applications, Vol-I, II, Wiley India,									
3rd	edition, 2008.									
L										
Reference E	books:									

Course Code	Course Title		Course	Contact Hours Credit							
				Туре							
	G	raph Theory	-	Elective	L	3	Т	1	Р	0	4
	Ι										
Pre-requisite		:									
Course Assess	sme	ent Methods	A	s per CUJ n	orm	ns (60 i	narks f	rom e	nd ser	nester a	and 40 marks from
•	sess			ssional exai	mina	ations)					
Syllabus Version 01											
:											
Course Object	tive	s: The main	goa	al of this to	pic	is to s	tudy D	irected	d and	undirec	ted graphs; paths,
cycles, trees,	Eul	erian cycles,	ma	tchings and	l co	vering	s, conne	ectivit	у, Ме	enger's '	Theorem, network
flow, coloring,	, pl	anarity, with a	pp	lications to	the	science	es.				
Course Outcon	me	s (COs): Afte	r co	ompletion c	of th	e grap	h theor	y, stuc	dents a	achieve	d command of the
fundamental d	lefi	nitions and co	onc	epts of grap	ph t	heory.	Further	stude	ents ai	e famil	iar with the major
viewpoints and goals of graph theory: classification, extremality, optimization and sharpnes						on and sharpness,					
algorithms, an	gorithms, and duality. Students are able to				evaluate real-world applications using graph theory.						

Unit – 1	Graphs and Sub graphs:- Graphs and simple graphs, Graph isomorphism, The
	incidence and adjacency matrices, sub graphs, connected and bipartite graphs, walk,
	trail, path and cycles.
Unit – 2	Application:- The Shortest path problem, Dijkstra algorithm, Warshall Algorithm.
Unit – 3	Trees:- Trees, Cut Edge and Bond, Cut vertex, spanning trees and Cayley's formula.
	The Connector Problem: Prim's Algorithm, Kruskal's Algorithm.
	Euler tour and Hamilton's Cycles, characterization of Eulerian graphs, a necessary
	and some sufficient characterizations of Hamiltonian graph. Closure and degree
	majorization and related results, Chinese Postman Problem.
Unit – 4	Matchings: Theorem of Berge, Matchings and coverings in Bipartite graphs,
	Application: Hall's marriage theorem, Some Assignment Problems.
Unit – 5	Connectivity: m-connectivity and blocks, Construction of Reliable Communication
	Networks.
Unit – 6	Vertex Coloring: Planar graph, Euler's formula, Chromatic Number, Brook's
	Theorem, 5-color theorem.
Unit – 7	Lab Component: Implementation in C: Dijkstra Algorithm, Warshall Algorithm,
	BFS, DFS, Prims Algorithm, Kruskal Algorithm, Connectivity Algorithm, Flurey
	Algorithm.
Text Books	
1. J.A. Bo	ondy and U.S.R Murty: Graph Theory, Springer, 2008.
2. F. Hara	ary: Graph Theory, Westview Press, 1994.
3. R.J. W	ilson: Introduction to Graph Theory, 4th edition, Pearson, 2002.
4. J. Clar	k and D. A. Holton: A First Look at Graph Theory, World Scientific, 1991.
5. D.B. W	Vest: Introduction to Graph Theory, 2nd edition, PHI Learning, 2009.
6. N. Dec	b: Graph Theory with Applications to Engineering and Computer Science,
Prentic	e-Hall of India, 2004.
Reference Boo	oks:

Course Code	Course Title	Course	Contact Hours Credit						
		Туре							
MAT 023010	Numerical	Minor	L	3	Т	0	Р	1	4
	Analysis with								
	Lab-I								
Pre-requisite	•								

Course Assessme	ent Methods	As per CUJ norms (60 marks from end semester and 40 marks from					
:		sessional examinations)					
Syllabus Version	01						
:							
Course Objective	es: This cour	se covers: the mathematical and computational foundations of the					
numerical approx	ximation and	solution of scientific problems; simple optimization; vectorization;					
clustering; polyn	omial and spl	ine interpolation; pattern recognition; integration and differentiation;					
solution of large-	scale systems	of linear and nonlinear equations; modeling and solution with sparse					
equations; explicit	it schemes to	solve ordinary differential equations.					
Course Outcome	s (COs): Der	nonstrate an understanding of common numerical methods and how					
they are used to	obtain approx	imate solutions to mathematical problems. Apply numerical methods					
to obtain approx	imate solution	ns to mathematical problems. Derive numerical methods for various					
mathematical ope	erations and ta	asks, such as interpolation, differentiation, integration, the solution of					
linear and nonlin	ear equations	, and the solution of differential equations. Analyse and evaluate the					
accuracy of com	mon numerica	al methods. Implement numerical methods in Matlab. Write efficient,					
well-documented	Matlab code	and present numerical results in an informative way.					
Unit – 1	Nature of r	umerical computations: errors and their propagation, convergence					
	and stability	of numerical algorithms; efficiency and arithmetic, complexity.					
Unit – 2	Numerical	solution of systems of linear equations: Direct methods for solving					
	linear syster	ns, error analysis. The residual correction method. Iteration methods,					
	Error predic	tion and Acceleration.					
Unit – 3	Matrix Eig	envalue problem: Eigenvalue location, error, and stability results,					
	Power meth	od. Orthogonal transformations using Householder matrices. The					
	eigenvalues	of a symmetric Tridiagonal matrix. QR method. The calculation of					
	Eigenvector	s and Inverse iteration.					
Unit – 4	Numerical	solutions of Non-linear equations: Solution of non-linear equations					
	by iterative	methods, acceleration of convergence. Newton's methods for					
	polynomials	, quotient-difference algorithms. Numerical solution of system of					
	Non-linear e	quations.					
Unit – 5	Interpolatio	on: Interpolating polynomial and its construction using Lagrange					
	methods and	d methods of differences, iterated interpolation, method of divided					
	differences,	inverse interpolation, Hermite Interpolation. The general Hermite					
	interpolation	problem. Spline function and their use.					
Unit – 6	Lab Com	ponent: Exposure to Matlab/Mathematica and computational					
	experiments	based on the algorithms discussed in the course.					
Text Books							
1. K. Atkins	on: An Introd	uction to Numerical Analysis, 2nd edition, Wiley, 1989.					
2. R.L. Burd	2. R.L. Burden and J.D. Faires: Numerical analysis, 7th edition, Brooks Cole, 2001.						
3. P.J. Davis: Interpolation and Approximation, Dover, 1975.							

- 4. J.M. Ortega: Numerical Analysis: A Second Course, SIAM, 1987.
- 5. S.S. Sastry: Introductory Methods of Numerical Analysis, Phi Learning, 2009.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Course Code	Course Title	e Course Type			Credit				
MAT 023030	Complex	Minor	L	3	Т	1	Р	0	4
	Analysis								
Pre-requisite	:								
Course Assessme	nt Methods	As per CUJ r	norm	ns (60 i	narks fi	rom e	end set	mester a	and 40 marks from
:		sessional examination of the session	mina	ations)					
Syllabus Version	01								
:									
Course Objective	s: This course	e covers fund	ame	ntal kr	owledg	e of	compl	ex num	bers including the
theory of analytic	al functions.	This course	also	covers	the kn	owle	dge o	f limits	and continuity for
complex function	s as well as th	e consequenc	es o	f contii	nuity. F	urthe	r, this	course	has applications to
find definite integ	gration with the	he study of h	arm	onic ar	nd speci	ial fu	nction	s. The	complex functions
make a significan	t contribution	to the underst	and	ing of t	he worl	d in v	which	we live	
Course Outcome	s (COs): Afte	er successful	con	npletio	n of th	e co	urse,	students	s will be able to:
Calculate series e	xpansions for	analytical co	mpl	lex-val	ued fun	ction	s and	evaluate	e contour integrals
in the complex pl	ane. Evaluate	complex con	tour	· integr	als dire	ctly, 1	by the	fundan	nental theorem, by
applying the Cau	chy integral t	heorem, and	the	Cauch	y integr	al for	rmula	Studer	its may be able to
represent complex	x functions as	a Taylor, po	wer	, and L	aurent	series	s, and	they cla	assify singularities
and poles, also ab	le to find resid	lues and evalu	ıate	comple	ex integ	rals u	sing t	he resid	ue theorem.
Unit – 1	Basic algebr	raic propertie	s o	f comp	olex nu	mber	s, Exj	ponentia	al form, Roots of
	complex nur	nbers. Function	ons	of a co	mplex v	variat	ole, m	appings	, Cauchy-Riemann
	equations, su	ifficient condi	ition	s for d	ifferenti	iabilit	y, Ana	alytic fu	nctions, Harmonic
	functions. El	lementary fun	ctio	ns: The	e expon	entia	l, loga	rithm f	unctions, branches
	and derivati	ves of logari	ithm	s. Cor	nplex e	expon	ents,	trigono	metric, hyperbolic
	functions and	d their inverse	es.						
Unit – 2	Integrals: Co	omplex integ	rals,	Uppe	r boun	ds fo	r mo	duli of	contour integrals,
	Cauchy's th	neorem, Cau	ıchy	's int	egral f	formu	ıla, I	Liouville	es' theorem and
	fundamental theorem of algebra, maximum modulis principle. Ser							principle. Series:	
	Classification	n of singulari	ties.	Repres	sentatio	ns of	holon	norphic	functions in terms
	of power set	ries, Meromo	rphi	c func	tions, z	eros	and p	oles, La	aurent expansions.
	Residues an	d Poles: pole	es a	nd zer	oes, Ca	uchy	's res	idue the	eorem, Residue at

	>						
		infinity, Residue at poles. Evaluation of improper integrals and definite integrals					
		using contour integration. Argument principle and Rouche's theorem.					
Unit –	3	Mapping by Elementary functions: Linear transformations, linear fractional					
		transformations, other mappings by elementary functions. Conformal mapping:					
		Preservation of angles, transformations of harmonic functions and boundary					
		conditions. Applications of conformal mappings.					
Text B	Books						
1.	R. V. Chu	rchill and J. W. Brown: Complex Variables and Applications, 8 th edition, McGraw					
	Hill, 2009						
2.	L. Ahlfor	s: Complex Analysis: an Introduction to the Theory of Analytic Functions of					
	One Comp	blex Variable, 3 rd edition, Tata McGraw Hill, 1979.					
3.	• E.T. Copson: Theory of Functions of a Complex Variable, Oxford University Press, 1970.						
4.	J.B. Conw	ay: Functions of One Complex Variable, 2 nd edition, Narosa, 1973.					
5.	D. Sarasor	1: Complex Function Theory, 2 nd edition, Hindustan Publishing Company, 2008.					
6.	M.J. Ablo	witz: Complex Variables Introduction and Applications. 2 nd edition. Cambridge					
	University	Press, 2003.					
7.	S. Ponnus	amy and H. Silverman: Complex Variables with Applications, Birkh [®] auser,					
	2006.						
Refere	ence Books:						

Course Code	Course Title	e Course Type			Contac	Credit					
MAT 013020	Statistics-II	Major	L	3	Т	1	Р	0	4		
Pre-requisite	:										
Course Assessme	ourse Assessment Methods			As per CUJ norms (60 marks from end semester and 40 marks from							
:		sessional exa	mina	minations)							
Syllabus Version 01											
:											
Course Objective	s: Statistics-I	is the prerequ	isite	for this	s course	e. The	cour	se is to	design a statistical		
hypothesis about	a real-world	problem and	l con	duct a	ppropri	ate te	st for	drawin	g valid inferences		
about the population	tion character	istics. It is ine	evital	ble to l	have the	e knov	vledge	e of hyp	oothesis testing for		
any research work. This course will provide an opportunity to learn R programming to a substantial							ing to a substantial				
extent. This cour	tent. This course introduces the concepts and methods of probability and distribution theory an								ibution theory and		

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

these tools are used to develop the theory of statistical estimation and hypothesis testing

Course Outcomes (COs): After completion of the course students may calculate probabilities and quantiles for sampling distributions related to the normal distribution (t, chi-square, F); and apply the Central Limit Theorem to calculate probabilities and quantiles for the sample mean. Also They can construct point and interval estimators; evaluate their goodness (bias, variance, mean squared error). Furthermore, they can determine properties of point estimators (efficiency, consistency, sufficiency); find minimum variance unbiased estimators; and find methods of moments and maximum likelihood estimators. Finally, they perform hypothesis tests for the mean; compute p-values, and probabilities of Type I and Type II errors; determine the power of a test and apply the Neyman-Pearson Lemma; construct likelihood ratio tests

Unit - 1 Principle of Data Reduction: Introduction, The Sufficiency Principle, Sufficient, Minimal Sufficient, Ancillary and Complete Statistics, Exponential Family, The Likelihood Principle, The Likelihood Function, The Equivariance Principle. Unit - 2 Point Estimation: Introduction, Problem of Point Estimation, Unbiased Estimator, Uniformly Minimum Variance Unbiased Estimator, Lower Bound for the Variance of an Estimator, Method of Moments Estimators, Maximum Likelihood Estimators, Bayes Estimators. Unit - 3 Methods for Evaluating Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality. Unit - 4 Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions. Unit - 5 Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Variance of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Yariances on the Variances on the Variance of a Normal Distribution; Variance Know as well as Unknown Cases, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Diets of Hypotheses on two Proportions, Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit - 6 </th <th></th> <th></th>		
Minimal Sufficient, Ancillary and Complete Statistics, Exponential Family, The Likelihood Principle, The Likelihood Function, The Equivariance Principle. Unit - 2 Point Estimation: Introduction, Problem of Point Estimation, Unbiased Estimator, Uniformly Minimum Variance Unbiased Estimator, Lower Bound for the Variance of an Estimator, Method of Moments Estimators, Maximum Likelihood Estimators, Bayes Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality. Unit - 4 Confidence Interval (C1) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions. Unit - 5 Tests of Hypotheses: Introduction, Statistical Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution; Variances know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests, Unbiased Tests. Unit - 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.	Unit – 1	Principle of Data Reduction: Introduction, The Sufficiency Principle, Sufficient,
Likelihood Principle, The Likelihood Function, The Equivariance Principle. Unit - 2 Point Estimation: Introduction, Problem of Point Estimation, Unbiased Estimator, Uniformly Minimum Variance Unbiased Estimator, Lower Bound for the Variance of an Estimator, Method of Moments Estimators, Maximum Likelihood Estimators, Bayes Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality. Unit - 3 Methods for Evaluating Estimators: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions. Unit - 5 Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit - 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		Minimal Sufficient, Ancillary and Complete Statistics, Exponential Family, The
Unit - 2 Point Estimation: Introduction, Problem of Point Estimation, Unbiased Estimator, Uniformly Minimum Variance Unbiased Estimator, Lower Bound for the Variance of an Estimator, Method of Moments Estimators, Maximum Likelihood Estimators, Bayes Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality. Unit - 4 Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions. Unit - 5 Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance of a Normal Distribution; Variance of a Normal Distribution; Variance of Normal Distributions; Variances know as well as Unknown Cases, Tests of Hypotheses on the Variances on the Variances, Tests of Fupotheses on the Variances, Tests of Fupotheses on a Proportion, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit - 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		Likelihood Principle, The Likelihood Function, The Equivariance Principle.
Estimator, Uniformly Minimum Variance Unbiased Estimator, Lower Bound for the Variance of an Estimator, Method of Moments Estimators, Maximum Likelihood Estimators, Bayes Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality. Unit - 4 Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions. Unit - 5 Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit - 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests. Text Books -	Unit – 2	Point Estimation: Introduction, Problem of Point Estimation, Unbiased
the Variance of an Estimator, Method of Moments Estimators, Maximum Likelihood Estimators, Bayes Estimators. Unit - 3 Methods for Evaluating Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality. Unit - 4 Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions. Unit - 5 Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit - 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		Estimator, Uniformly Minimum Variance Unbiased Estimator, Lower Bound for
Likelihood Estimators, Bayes Estimators.Unit - 3Methods for Evaluating Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality.Unit - 4Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		the Variance of an Estimator, Method of Moments Estimators, Maximum
Unit - 3Methods for Evaluating Estimators: Introduction, Mean Squared Error, Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality.Unit - 4Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on the Orgontions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		Likelihood Estimators, Bayes Estimators.
Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and Unbiasedness, Loss Function Optimality.Unit - 4Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.	Unit – 3	Methods for Evaluating Estimators: Introduction, Mean Squared Error,
Unbiasedness, Loss Function Optimality.Unit - 4Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution; Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, 		Standard Error of an Estimator, Best Unbiased Estimators, Sufficiency and
Unit -4Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		Unbiasedness, Loss Function Optimality.
a Normal Distribution, CI on a Proportion, CI on the difference between Means for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books	Unit – 4	Confidence Interval (CI) Estimation: Introduction, CI on Mean and Variance of
for Paired Observations, CI on the Ratio of Variances of two Normal Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text BooksText Books		a Normal Distribution, CI on a Proportion, CI on the difference between Means
Distributions, CI of the Difference Between two Proportions.Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books		for Paired Observations, CI on the Ratio of Variances of two Normal
Unit - 5Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.		Distributions, CI of the Difference Between two Proportions.
Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books	Unit – 5	Tests of Hypotheses: Introduction, Statistical Hypotheses, Type-I and Type-II
of a Normal Distribution; Variance know as well as Unknown Cases, Tests of Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books		Errors, One-Sided and Two-Sided Hypotheses, Tests of Hypotheses on the Mean
Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books		of a Normal Distribution; Variance know as well as Unknown Cases, Tests of
Proportion, Tests of Hypotheses on the Means of Two Normal Distributions; Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books		Hypotheses on the Variance of a Normal Distribution, Tests of Hypotheses on a
Variances know as well as Unknown Cases, The Paired t-Test, Tests for Equality of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests.Unit - 6Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests.Text Books		Proportion, Tests of Hypotheses on the Means of Two Normal Distributions;
of two Variances, Tests of Hypotheses on two Proportions, Testing for Goodness of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit – 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests. Text Books Text Books		Variances know as well as Unknown Cases. The Paired t-Test. Tests for Equality
of Fit, Contingency Table Tests, Neyman-Pearson Theory of Testing of Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit – 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests. Text Books Text Books		of two Variances. Tests of Hypotheses on two Proportions. Testing for Goodness
Hypotheses, Uniformly Most Powerful Tests, Likelihood Ratio Tests, Unbiased Tests. Unit – 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests. Text Books		of Fit. Contingency Table Tests. Nevman-Pearson Theory of Testing of
Image: State of the state		Hypotheses Uniformly Most Powerful Tests Likelihood Ratio Tests Unbiased
Unit – 6 Asymptotic Evaluations: Introduction, Consistency, Asymptotic Unbiasedness, Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests. Text Books		Tests
Efficiency, Asymptotic Normality, Large Sample Interval Estimation, Large Sample Tests. Text Books	Unit – 6	Asymptotic Evaluations: Introduction Consistency Asymptotic Unbiasedness
Text Books		Efficiency Asymptotic Normality Large Sample Interval Estimation Large
Text Books		Sample Tests.
Text Books		
Text Books		
	Text Books	

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- 1. V.K. Rohatgi and A.K. Ehsanes Saleh: An Introduction to Probability and Statistics, John Wiley and Sons, Inc. 2003.
- **2.** W.W. Hines, D.C. Montgomery, D.M. Goldsman, and C.M. Borror: Probability and Statistics in Engineering, John Wiley and Sons, 4th Edition, 2007.
- 3. G. Casella and R. L. Berger: Statistical Inference, Cengage Learning, 3rd Edition, 2008.
- **4.** S.M. Ross: Introduction to Probability and Statistics for Engineers and Scientists, Academic Press. 3rd Edition, 2004.
- 5. S. C. Gupta and V. K. Kapoor: Fundamental of Mathematical Statistics, S. Chand, 2007.
- **6.** A. M. Goon, M. K. Gupta, B. Dasgupta: Fundamental of Statistics, Vol. I, II, World Press, 2001
- 7. Whitney K. Newey and Daniel Mc Fadde, Large sample estimation and hypothesis testing, https://statweb.rutgers.edu/ztan/material/newey-mcfadden.pdf

Course Code	Course Titl	e	Course	Contact Hours Credit						Credit	
			Туре								
MAT 013040	Rings and		Optional	L	3	Т	1	Р	0	4	
	Field										
Pre-requisite	•										
Course Assessme	ent Methods	As	s per CUJ norms (60 marks from end semester and 40 marks from								
:		ses	essional examinations)								
Syllabus Version	u 01										
:											
Course Objective	es: Group theo	ory i	is the prerec	quisi	te for	this cour	rse. T	his co	urse co	vers well scientific	
knowledge of th	ne theory of	rin	igs which	is a	ın imp	ortant	algeb	raic s	tructure	e in mathematics(
specifically in alg	gebra). The co	ours	e also cove	rs th	e deep	study o	of som	ne inte	resting	rings as Euclidean	
rings and a ring c	of polynomial	s ov	ver a field w	hicl	n is ve	ry usefu	l in th	e stuc	ly of fir	ite fields and field	
extensions. These	e concepts hav	ve v	ery importa	int a	pplicat	ions in	Galoi	s theo	ry.		
Course Outcomes (COs): After completion of this course the students acquire basic concepts of a							asic concepts of a				
Ring as an alg	Ring as an algebraic structure like the definitions of a Ring, Ideals, the factor ring, the							e factor ring, the			
automorphisms of a ring, principal ideal domain, prime and maximal ideals, the field of quotients of											
an integral domain, characteristic of a ring and direct sum of rings. Students construct finite fields							struct finite fields				
from a field of polynomial over a finite field and an irreducible polynomial. A deep study of som							eep study of some				
important rings and field extensions that essentially arise from ideas of Galois Theory. The student							eory. The students				
cover the concept	t of finite field	ds w	which has a	usef	ul app	lication	in coo	ding th	heory.	-	
	FF										

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

Unit – 1	Review of Basic Ring theory: Integral domain and field of Fraction, Prime
	Avoidance theorem, Unique factorization domain, Principal Ideal domain, Euclidean
	domain, Gauss lemma, Polynomial Rings, Power series ring, Group ring,
Unit – 2	Fields: Definition and examples, Irreducibility Criterions, Prime Subfield, Algebraic
	and transcendental elements and extensions.
Unit – 3	Splitting field: Splitting field of a polynomial. Existence and uniqueness of
	algebraic closure. Finite fields, Normal and separable extensions, Inseparable and
	purely inseparable extensions. Simple extensions and the theorem of primitive
	elements, Perfect fields.
Text Books	
1. S. Lang	g: Algebra. Graduate Text in Mathematics, Revised 3rd Edition, Springer- Verlag,

- 2002.2. M. Artin: Algebra. 2nd Edition Pearson Education, 2011.
- 3. S. Dummit and R.M. Foote: Abstract Algebra. 3rd Edition John Wiley and Sons Inc, 2004.
- 4. Musili: Introduction to Rings and Modules, 2nd edition, Narosa Publication, 1997.
- 5. N. Jacobson: Basic Algebra I, Basic Algebra II, 2nd Edition, Dover Publications, 2009.

Course Code	Course Title	e Course Type		Contact Hours Cre						
MAT 013060	Mechanics -	- Major	L	3	Т	1	Р	0	4	
	Ι									
Pre-requisite	:	· · · · · · · · · · · · · · · · · · ·								
Course Assessme	ent Methods	As per CUJ norms (60 marks from end semester and 40 marks from								
:	sessional ex	amina	ations)							
Syllabus Version 01										
:										
Course Objective	Course Objectives: Students will understand the vectorial representation of forces and moments.									
Student will gain knowledge in solving problems involving work and energy. Understand the basic										
physics associated with waves and oscillations and apply it to acoustics. To develop the							To develop the			
understanding of modeling dynamic systems of engineering using vectoral approach and ability							bach and ability to			
model the engineering components as particles to study their Kinematics. Application of Newtor								ation of Newton's		

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

laws to particles and systems of particles. Application of work energy principle, work momentum principle to particles and systems of particles. To study satellite motion using Kepler's Law and to understanding the principles of central force motion.

Course Outcomes (COs):

- Will learn about small oscillation, Inertia tensor, rigid body which will be helpful to know about the motion of our galaxy, stars etc.
- To solve the classical and wave mechanics problems

• To aware of limits of mechanics to apply the ideas in solving the problems in their parent streams.

• Understand the force systems and draw free body diagram to analyze rigid body equilibrium.

• Differentiate in strain energy stored in a body when the load is suddenly applied and gradually applied.

• Comprehend the general characteristics of central forces and the application of Kepler's laws to describe the motion of planets and satellite in circular orbit through the study of law of Gravitation.

Linit 1	Warturel Warthe Infinitesimal displayment of rivid hade percentlate fixed plane.
Omt - 1	virtual work: minintesinal displacement of rigid body parallel to fixed plane,
	Principle of virtual work, work and potential energy.
Unit – 2	Forces in three dimensions: Acting at different points of a rigid body, their
	resultant, conditions of equilibrium, poinsot's central axis. Wrentch and Pitch, null
	lines and planes
Unit 2	Equilibrium of strings and shainer Common Category suggestion bridge
Omt - 5	Equilibrium of strings and chains: Common Catenary, suspension bridge,
	Catenary of uniform strength, strings on a smooth surfaces and curves. Strings
	under central forces, extensible strings.
Unit – 4	Thin Beams and Flexible Cables: Tension, Shearing force and Bending moment,
	general formulae for flexible cables hanging freely, common catenary, frames.
Unit – 5	Kinematics of Particle and system: Rectangular, Radial, transversed, tangential
	and normal velocities and accelerations, angular velocity and acceleration.
	principle of energy and angular momentum for a particle and a system
I Luit C	Principie of energy and angular momentum for a particle and a system.
Unit - 6	Recumear Motion: Motion with variable accelerations, narmonic oscillators,
	damped and forced oscillations.
	Constrained Motion: Motion of a particle in a vertical circle (inside and outside),
	in a cycloid, along a smooth plane curve.
Unit – 7	Central Orbit: Differential equation of a central orbit, law of force, velocity and
	periodicity for a given central orbit and the equation of orbit for a given law.
	Stability of a circular orbit Planetary orbits Keller's laws
Taxt Dools	Submity of a chedial offic. I failed y offics, feeler 5 faws.
Text DOOKS	
-	
1. S. L. Lon	ey: An Elementary Treatise on STATICS, CUP, 1963.

2. S. L. Loney: The Elementary Treatise on the Dynamics of a Particle and the Rigid Bodies, CUP, 1919.

3. A. S. Ramsey: Dynamics, Vol. I, II, CUP, 1961.

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) <u>Homepage</u>:http://www.cuj.ac.in

- 4. I. H. Shames: Engineering Mechanics: Statics and Dynamics, Prentice Hall of India, 2006.
- 5. J. L. Synge and Griffith: *Principle of Mechanics*, McGraw Hill, 2007.
- 6. F. P. Beer and E. R. Johnston: *Vector Mechanics for Engineers*, Tata McGraw Hill, 2004.

Course Code	Course Title	Course Type	se Contact Hours				Credit				
MAT 023020	Number	Minor	L	3	Т	1	Р	0	4		
	Theory										
Pre-requisite	•										
Course Assessme	ent Methods	As per CUJ norms (60 marks from end semester and 40 marks from									
:		sessional examinations)									
Syllabus Version	01										
•											
Course Objective	es: The course	aims to give	e ele	ementa	ry idea	s of r	numbe	r theory	y which will have		
applications in c	ryptography.	Reader Identi	ify a	nd app	oly vari	ous p	ropert	ties of a	and relating to the		
integers includin	ig the Well-O	rdering Princ	ciple	, prim	ies, uni	ique	factor	ization,	and the division		
algorithm, and un	nderstand the c	concept of qua	adra	tic con	gruence	e. Prir	ne po	wer mo	dule and primitive		
roots may help	to improve th	e existing al	gori	thm fo	r prima	ality 1	testing	g and p	rime factorization		
problem which	is highly appl	icable in cod	lıng	theory	and c	rypto	graph	y to de	velop new digital		
devices. This cou	irse also cover	rs Euler's, La	grar	ige and	Wilso	n the	orem,	Euler c	riterion, Legendre		
symbol, Law of a	quadratic recipi	rocity; neithei	r Eu	ler nor	Legenc	ire we	ere ab	le to pro	ove this but Gauss,		
Pell's equation.											
Course Outcomes (COs): After completing the course, students will be able to solve elementary											
number theory p	problems they	can apply el	eme	ntary	number	theo	ry to	cryptog	graphy. Develop a		
deeper conceptua	i understandin	g of the theor	enc	al dasis	s of nur	nber t	neory	and lae	entity now number		
theory is related i	o and used in c	ryptograpny.									
Unit – 1	Divisibilty, d	ivision algor	ithm	, Eucl	idean A	Igori	thm, 1	Algebra	ic congruences of		
	higher degree. General Taylor Expansion Method for Prime Power Modulus							e Power Modulus			
	Theorems of	Euler, Lag	rang	e and	Wilsor	n. Pri	mality	/ Testir	ng and Factoring,		
	Primitive Roo	ots.							-		
Unit – 2	Quadratic C	Congruence,	Eul	er's	Criteria	an	d Le	gendre	's Symbol, two		
	squaretheorer	n, quadratic i	recip	orocity	law, A	rithm	etic fu	inction,	Dirichlet product,		
	Mobius inversion formula, divisor function.										

Unit – 3	Simple continued fractions, Approximation to rational numbers, Hurwitz theorem,						
	periodic continued fraction, Pell's Equation.						
Text Books							
1. G.H. Har	dy and E.M. Wright: An Introduction to The Theory of Numbers, 6th edition,						
Oxford U	niversity Press, 2008.						
2. D.M. Burton: Elementary Number Theory, 6 th edition, McGraw-Hill, 2005.							
3. I. Niven,	H.S. Zuckerman and H.L. Montgomery: An Introduction to The Theory of						
Numbers,	5th edition, Wiley, 1991.						
4. T. M. Apostol: Introduction to Analytic Number theory, Springer-Verlag 1976							
Reference Books							

Course Code	Course Title	e Course Type	Contact Hours Credit						Credit	
MAT 023040	Group Theory	Minor	L	2	Т	0	Р	0	2	
Pre-requisite	•							I.		
Course Assessment Methods		As per CUJ r sessional examples	As per CUJ norms (60 marks from end semester and 40 marks from sessional examinations)							
Syllabus Version	01									
Course Objectives: The main aim of the course is to introduce basic concepts of abstract algebra, especially the notion of a group. The course will help us to prepare for further study in abstract algebra and many other areas of mathematics. Group theory is one of the great simplifying and unifying ideas in modern mathematics. It plays a major role in our understanding of fundamental particles, the structure of crystal lattices, and the geometry of molecules. Course Outcomes (COs): At the end of the course students are able to understand the concept of algebraic structures, groups, rings, fields, modules, etc. Students are also able to understand										
isomorphism, and their properties. Further, students can understand the integral domain, zer divisors, division ring, ring homomorphism, and field.							gral domain, zero			
Unit – 1	Semigroups, Groups, Homomorphisms, Subgroups, Permutation Groups, Normal Subgroups, Isomorphism Theorem, Automorphisms, Conjugacy and G-sets.									

(भारतीय संसद के अधिनियम 2009 द्वारा स्थापित) (Established by an Act of Parliament of India in 2009) Homepage:http://www.cuj.ac.in

Unit – 2	Normal Series, Solvable groups, Nilpotent groups, Cyclic decomposition of
	permutations, Alternating group. Structure Theorem of Finite abelian groups.
	Sylows theorems, groups of orders p^2 , pq .
1	

Text Books

- 1. P.B. Bhattacharya, S. K. Jain and S. R. Nagpaul: Basic Abstract Algebra, 2nd edition, Cambridge University Press, 1995.
- J. A. Gallian: *Contemporary Abstract Algebra*, 4th edition, Narosa, 1998.
 D. S. Dummit and R. M. Foote: *Abstract Algebra*, 2nd edition, Wiley, 1999.
 I. N. Herstein: *Topics in Algebra*, 2nd edition, Wiley, 1975.

Reference Books:

Signature of the Head of Department with seal